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A note on semi-regular locales

Wei He

Abstract. Semi-regular locales are extensions of the classical semi-

regular spaces. We investigate the conditions such that semi-regularization

is a functor. We also investigate the conditions such that semi-regularization

is a reflection or coreflection.

1 Introduction

Recall that a topological space X is said to be a semi-regular space
if the family of regular open subsets of X forms a base for X(some
authors assume Hausdorffness). The pointless version of semi-regularity
is first introduced by J. Paseka and S̆marda in [7], and some properties of
semi-regular frames(locales) were studied in [7] and [2]. In this note, we
investigate the conditions such that semi-regularization is a functor. We
also investigate the conditions such that semi-regularization is a reflection
or coreflection. For convenience, we will not distinguish a locale and the
corresponding frame, i.e we will use a same letter to represent a locale
and its corresponding frame. For more details about locales or frames
please refer to Johnstone [4].
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Let X be a locale. An element x ∈ X is called to be a regular element
if ¬¬x = x, where ¬x =

∨
{y ∈ X | y∧x = 0} be the pseudocomplement

of x. The family of all regular elements of X is denoted by R(X). A
locale X is called semi-regular [7] if the family R(X) of regular elements
of X can generates X by joins. It is clear that a topological space X is
a semi-regular space if and only if its open sets locale O(X) is a semi-
regular locale.

Many properties of semi-regular topological spaces can be trans-
formed to locales. For example, a regular locale must be semi-regular [7];
the product of a family of semi-regular(strongly Hausdorff semi-regular)
locales is semi-regular(strongly Hausdorff semi-regular) [7], etc. Semi-
regularity is in general not hereditary even for spatial case. But it is
hereditary for dense sublocales [7] and open sublocales as following.

Lemma 1.1. Let X be a semi-regular(strongly Hausdorff semi-regular)

locale and Y an open sublocale. Then Y is semi-regular(strongly Haus-

dorff semi-regular).

Proof. First, strongly Hausdorffness is hereditary since for every sublo-

cale inclusion Y � X, the following square is a pullback square.

Y
4 //

��

Y × Y

��
X

4 // X ×X

If Y is an open sublocale of X, we can regard Y as ↓ a for some

a ∈ X. For x ∈↓ a, write ¬′x for its pseudocomplement in ↓ a, then

¬′x = ¬x ∧ a. So for each y ∈↓ a, y ∧ ¬x = y ∧ ¬′x this implies that

¬′¬′x = ¬¬x∧a for every x ∈↓ a. Thus R(↓ a) = (R(X)∩ ↓ a)∪{a}.

It is well-known known that regularity implies strongly Hausdorff-
ness, and strongly Hausdorffness implies Hausdorffness for spatial lo-
cales. I don’t know whether strongly Hausdorff semi-regular locales are
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extensions of Hausdorff semi-regular spaces, i.e. a topological space X
is Hausdorff semi-regular if and only if its open sets locale O(X) is a
strongly Hausdorff semi-regular locale.

2 Semi-Regularization

Let X be a locale. We write SR(X) for the locale the corresponding
frame of which is the subframe of X generated by R(X), i.e. the frame
whose elements have the form

∨
S, S ⊆ R(X). It is clear that SR(X) is

a sub-complete lattice of X since every meet of regular elements of X is
still a regular element. We write ¬′a for the pseudocomplement of a in
SR(X) for a ∈ SR(X). The following result can be found in [2].

Lemma 2.1. For each a ∈ SR(X), ¬′a = ¬a.

By this Lemma, the following result is clear.

Proposition 2.2. Let X be a locale. Then SR(X) is a semi-regular

locale.

Lemma 2.3. Let X be a strongly Hausdorff locale and let Y be a sub-

complete lattice of X. If ∀a, b ∈ X with a ∧ b = 0, there exist x, y ∈ Y

such that a ≤ x, b ≤ y and x ∧ y = 0, then Y is a strongly Hausdorff

locale.

Proof. Let 4 : X → X×X and 4′ : Y → Y ×Y be the diagonals. Then

we have N0 =↓ {(a, b) | a, b ∈ X, a ∧ b = 0} =↓ {(x, y) | x, y ∈ Y, x ∧ y =

0} = N ′0. Suppose N ′0 ⊆ J be an element of Y × Y . Then it is clear that

the lower set ↓ J in X × X is an element of X × X since Y is closed

under arbitrary meets, and N0 ⊆↓ J . Write d′ =
∨
{x ∈ Y | (x, x) ∈ J}.

It suffice to show that x ∧ y ≤ d′ for x, y ∈ Y implies that (x, y) ∈ J .

Suppose x, y ∈ Y and x∧y ≤ d′. Then (x, y) ∈↓ J since X is strongly

Hausdorff. Hence (x, y) ∈ J .
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By Lemma 2.1, we know that SR(X) has the same regular elements
as X, i.e. R(SR(X)) = R(X) for each locale X. For ∀x, y ∈ X with
x ∧ y = 0, we have ¬¬x ∧ ¬¬y = 0. Thus the following result is clear by
Proposition 2.1.

Corollary 2.4. Let X be a strongly Hausdorff locale. Then SR(X) is a

strongly Hausdorff semi-regular locale.

We call SR(X) the semi-regularization ofX. In general, semi-regularization
is not a functor even in the spatial case(see [6]). We now consider the
situation such that the semi-regularization becomes a functor.

Let f : X → Y be a locale morphism. We call f a δ-morphism if
for any regular element u ∈ R(Y ), f∗(u) ∈ SR(X), i.e. f∗(u) can be
represented as a join of regular elements of X. So the statement that
f : X → Y is a δ-morphism is equivalent to saying that we have a
commutative square of frame homomorphisms:

SR(Y ) //

f∗|SR(Y )

��

Y

f∗

��
SR(X) // X

Recall that for a continuous map f : X → Y between two topological
spaces X and Y , f is said to be δ-continuous if for each regular open set
U in Y , f−1(U) can be represented as a join of regular open sets in X.
So our δ-morphisms are just extensions of δ-continuous maps.

Lemma 2.5. Let f : X → Y be a locale morphism. The following

statements hold:

1. If Y is regular then f is a δ-morphism.

2. If f∗(¬¬a) = ¬¬f∗(¬¬a) for ∀a ∈ Y , then f is a δ-morphism.

3. If f∗(¬a) = ¬f∗(a) for ∀a ∈ Y , then f is a δ-morphism.

Proof. (1) See [2, Lemma 3.4].
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(2) The condition implies that f∗(u) is a regular element of X for

every regular element u of Y .

(3) For every regular element u ∈ R(Y ), f∗(u) = f∗(¬¬u) = ¬¬f∗(u)

is a regular element of X.

Morphisms satisfying condition (3) are called nearly open morphisms
which is equivalent to the condition that for each open sublocale U �
X, the image f(U) is dense in some open sublocale of Y (see[1]). We
call morphisms satisfying condition (2) regular open morphisms which
is equivalent to the condition that for each regular element y ∈ R(Y ),
f∗(y) is a regular element of X. Clearly,

nearly openmorphism⇒ regular openmorphism⇒ δ −morphism

Regular open morphisms, nearly open morphisms and δ-morphisms
are respectively stable under composition. The categories of locales with
δ-morphisms, regular open morphisms, and nearly open morphisms will
be denoted respectively by

Locδ, Locro, Locno

Write SRLoc, SRLocro, SRLocno for the subcategories of semi-regular
locales with locale morphisms, regular open morphisms, and nearly open
morphisms respectively. We have three functors:

SR : Locδ → SRLoc;

SR : Locro → SRLocro;

SR : Locno → SRLocno

Now we consider the question of whether we could make the semi-
regularization functorial by restricting the objects rather than morphisms.

We will call a locale X almost regular if for each regular element
x ∈ R(X), x =

∨
{y ∈ X | y ≺ x}, where y ≺ x means there exists

element z ∈ X such that z ∧ x = 0, z ∨ y = 1. Recall that a topological
space X is said to be almost regular if for each regular closed set A ⊆ X
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and each x ∈ X \ A, there exist disjoint open sets U and V of X such
that x ∈ U, A ⊆ V (see [8]). So it is clear that almost regular locales are
pointless extensions of almost regular spaces.

Lemma 2.6. X is almost regular if and only if SR(X) is regular.

Proof. Suppose x ∈ R(X) and y ∈ X such that y ≺ x. Then ¬¬y ≺ x

since ¬¬¬y = ¬y. Hence x can be represented as a join of regular element

¬¬y with ¬¬y ≺ x. This shows that SR(X) is regular. The converse

case is clear.

Corollary 2.7. X is regular if and only if X is almost regular and semi-

regular.

Proof. The necessity is obvious by Lemma 1.1. Suppose that X is almost

regular and semi-regular, then

x =
∨
{a ∈ R(X) | a ≤ x} =

∨
{
∨
{y ∈ X | y ≺ a} | a ∈ R(X), a ≤

x} =
∨
{y ∈ X | y ≺ x}

for each x ∈ X.

Similar to the proof of Lemma 2.3 (1), we can show the following
result.

Lemma 2.8. Let f : X → Y be a locale morphism and Y be almost

regular, then f is a δ-morphism.

We write ARLoc and RLoc for the categories of almost regular locales
with locale morphisms and the category of regular locales with locale
morphisms respectively.

Theorem 2.9. SR : ARLoc → RLoc is a functor which is left adjoint

to the inclusion RLoc → ARLoc, i.e. SR(X) is a regular reflection for

every almost regular locale X.
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Let L be a locale. We write IdL for the frame of all ideas of L. For
each I ∈ IdL, it is clear that ¬I =↓ ¬

∨
I. Thus I ∈ R(IdL) if and only

if I be a principle ideal ↓ a with a ∈ R(L).

Lemma 2.10. Let L be a locale. The following conditions are equivalent:

1. SR(IdL) is isomorphic to IdR(L);

2. ¬(a ∧ b) = ¬a ∨ ¬b for ∀a, b ∈ L;

3. Each a ∈ R(L) has a complement in L.

Proof. (1)⇒(3) Let R̂(L) be the sublattice of L generated by R(L), then

SR(IdL) ∼= IdR̂(L). Hence condition (1) implies that R̂(L) ∼= R(L), i.e.

R̂(L) is a boolean algebra. Thus each a ∈ R(L) has a complement in L.

(3) ⇒ (2) Clear.

(2)⇒ (3) Suppose a ∈ R(L), then a∨¬a = ¬¬a∨¬a = ¬(¬a∧a) = 1,

which implies that ¬a is a complement of a in L.

(3)⇒(1) If each a ∈ R(L) has a complement in L, then R̂(L) ∼= R(L).

Thus SR(IdL) ∼= IdR(L).

A locale satisfying the above equivalent conditions will be called a
b-locale. For every locale L, we have a canonical map

∨
: SR(IdL)→ L

which is clearly a frame homomorphism.

Theorem 2.11. Let L be a b-locale. Then the canonical morphism L→

SR(IdL) becomes a compact zero-dimensional reflection of L, and it is

an embedding if and only if L is semi-regular.

We call a locale X almost compact if every S ⊆ R(X),
∨
S = 1

implies that there exists a finite set F ⊆ S such that
∨
F = 1.

Corollary 2.12. Let L be a almost compact b-locale. Then the canonical

map
∨

: SR(IdL)→ SR(L) is an isomorphism.
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3 Semi-Regularization as Reflection and Coreflection

For every locale X, SR : X → SR(X) is clearly nearly open, thus a
regular open morphism and a δ-morphism.

Theorem 3.1. The functors SR : Locδ → SRLoc, SR : Locro →

SRLocro, SR : Locno → SRLocno are left adjoint to the inclusions

SRLoc� Locδ, SRLocro � Locro, SRLocno � Locno respectively, i.e.

the categories SRLoc, SRLocro and SRLocno are respectively reflective

in the categories Locδ, Locro and Locno.

Now we consider the question of whether the semi-regularization
could be made to be a coreflection, i.e. SR becomes a right adjoint
to the inclusion SRLoc→ Loc.

Let X be a locale. We know that SR(X) is closed under arbitrary
joins and meets in X, hence the frame inclusion SR(X)� X has a left
adjoint X → SR(X) which assigns to every element x of X the least
element x̄ ∈ SR(X) with x ≤ x̄.

Definition 3.2. A locale X is said to be a c-locale if for every x, y ∈ X,

x ∧ y = x̄ ∧ ȳ.

Since the left adjoint X → SR(X) of the frame inclusion SR(X)�
X always preserves joins, so a locale X is a c-locale if and only if the left
adjoint X → SR(X) is a frame morphism.

Every semiregular locale is a c-locale.

Example 3.3. Let X be a locale such that its least element 0 is a prime

element (for example unit interval [0, 1] regarded as a locale; the open

sets lattice of a infinite set with the topology of complements of finite

sets). Then SR(X) is the two points lattice {0, 1}. For each x ∈ X,

x̄ =

 1, x 6= 0

0, x = 0
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hence x ∧ y = x̄ ∧ ȳ. Thus X is a c-locale.

If X is a c-locale, then for each a ∈ X and b ∈ SR(X), a ∧ b =
ā ∧ b implies that the frame inclusion SR(X) → X is an open frame
homomorphism.

We call a locale morphism f : X → Y c-locale morphism if for each
y ∈ Y , f∗(ȳ) = f∗(y). Every locale morphism between semiregular
locales is a c-locale morphism.

If f : X → Y and g : Y → Z are both c-locale morphisms, then

f∗g∗(z) = f∗g∗(z) = f∗g∗(z̄) = f∗g∗(z) = f∗g∗(z). It implies that
the composition gf is a c-locale morphism. Thus we have a category
CLoc of c-locales with c-locale morphisms.

Let X and Y be c-locales and f : X → Y be a c-locale morphism.
Define SR(f) : SR(X)→ SR(Y ) by

SR(f)∗(y) = f∗(y)

SR(f)∗ clearly preserves arbitrary joins. For ∀x, y ∈ SR(Y ), SR(f)∗(x∧
y) = f∗(x ∧ y) = f∗(x) ∧ f∗(y) = f∗(x)∧f∗(y) = SR(f)∗(x)∧SR(f)∗(y),
hence SR(f)∗ is a frame homomorphism.

Theorem 3.4. SR : CLoc → SRLoc is a functor which is right ad-

joint to the inclusion SRLoc → CLoc, i.e. SR(X) is the semi-regular

coreflection of X for every c-locale X.

Proof. Let X and Y be both c-locales and f : X → Y a c-locale mor-

phism. We have a commutative square:

SR(X) //

SR(f)
��

X

f

��
SR(Y ) // Y

So if Y is semi-regular, then SR(Y )→ Y is an isomorphism and f has a

unique factorization through the morphism SR(X)→ X.
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A locale morphism f : X → Y is called a cδ-morphism if it is si-
multaneously a c-morphism and a δ-morphism. We write CLocδ for the
category of c-locales with cδ-morphisms.

Corollary 3.5. The category SRLoc of semi-regular locales is simulta-

neously reflective and coreflective in the category CLocδ of c-locales and

cδ-morphisms.

4 Semi-Regularization as Booleanization

In this section we consider the situation where semi-regularization is a
Boolean algebra.

Lemma 4.1. Let X be a locale. The following conditions are equivalent:

1. SR(X) is a Boolean algebra.

2. R(X) is closed under arbitrary joins.

3. ¬¬
∨
S =

∨
{¬¬s | s ∈ S} for ∀S ⊆ X.

Proof. (1)⇒(2) The statement that SR(X) is a Boolean algebra implies

that R(X) is a Boolean algebra and closed under arbitrary joins.

(2)⇒(3) Suppose that R(X) is closed under arbitrary joins, then for

every S ⊆ X,
∨
{¬¬s | s ∈ S} = ¬¬

∨
{¬¬s | s ∈ S} > ¬¬

∨
S. Thus

¬¬
∨
S =

∨
{¬¬s | s ∈ S}.

(3)⇒(1) It suffices to show that every regular element is comple-

mented and R(X) is closed under arbitrary joins. Suppose a ∈ R(X),

then a ∨ ¬a = ¬¬a ∨ ¬a = ¬(¬a ∧ a) = 1. Thus a is complemented. For

every S ⊆ R(X),
∨
S = ¬¬

∨
S, hence R(X) is closed under arbitrary

joins.
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We will call a frame satisfying the above equivalent conditions cb-
frame. The category of cb-frames and frame homomorphisms is denoted
by CBFrm.

Theorem 4.2. The corresponding of Booleanization CBFrm → Bool

from the category of cb-frames to the category of complete Boolean alge-

bras is a functor which is equivalent to the semi-regularization functor

SR : CBFrm→ SRFrm.
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