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A pointfree version of remainder
preservation

Themba Dube and Inderasan Naidoo

Abstract. Recall that a continuous function f : X → Y between Ty-

chonoff spaces is proper if and only if the Stone extension fβ : βX → βY

takes remainder to remainder, in the sense that fβ [βX−X] ⊆ βY −Y . We

introduce the notion of “taking remainder to remainder” to frames, and,

using it, we define a frame homomorphism h : L → M to be β-proper,

λ-proper or υ-proper in case the lifted homomorphism hβ : βL → βM ,

hλ : λL → λM or hυ : υL → υM takes remainder to remainder. These

turn out to be weaker forms of properness. Indeed, every proper homo-

morphism is β-proper, every β-proper homomorphism is λ-proper, and λ-

properness is equivalent to υ-properness. A characterization of β-proper

maps in terms of pointfree rings of continuous functions is that they are

precisely those whose induced ring homomorphisms contract free maximal

ideals to free prime ideals.

1 Introduction

Suppose that for each topological space X in some appropriate subcat-
egory of Top there is an extension εX ⊇ X of X (meaning that a

Keywords: frame, remainder preservation, Stone-Čech compactification, regular Lindelöf core-
flection, realcompact coreflection, proper map, lax proper map.
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homeomorphic copy of X is dense in εX) such that every continuous
function f : X → Y between spaces in the subcategory has an extension
f ε : εX → εY which makes the diagram

εX
f ε
- εY

X

iX

6

f
- Y

iY

6

(1)

commute, where the upward morphisms are embeddings. We say f is ε-
proper in case f ε takes remainder to remainder in the sense that f ε[εX−
X] ⊆ εY − Y. Throughout, all spaces are assumed to be Tychonoff, that
is, completely regular and Hausdorff.

As an example, recall that in Tychonoff spaces proper maps (those
continuous functions f : X → Y for which f is closed and the fibers
f−1(y) are compact for each y ∈ Y ) have several characterizations, in-
cluding the following:

(a) For any space Z, the Cartesian product f × idZ : X ×Z → Y ×Z is
closed.

(b) The square (1) above, with ε replaced by β, is a pullback square.

(c) fβ takes remainder to remainder, i.e. fβ[βX −X] ⊆ βY − Y.

The map fβ : βX → βY in statement (c) is the Stone extension of f .
Thus, in the terminology above, β-proper maps in Tych are precisely
the proper maps – justifying the name “ε-proper”.

Our goal is to extend the notion of “taking remainder to remainder”
to the category CRegFrm of completely regular frames. With β and υ
denoting the usual functors (the former assigns the Stone-Čech compact-
ification both in Tych and CRegFrm, and the latter is the realcompact
reflector in Tych and the realcompact coreflector in CRegFrm), we
define β-proper and υ-proper homomorphisms “conservatively” in the
sense that, for ε equal to any of these functors, a continuous function
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f : X → Y is ε-proper if and only if the induced frame homomorphism
Of : OY → OX is ε-proper. In CRegFrm (unlike in Tych) there is a
Lindelöf coreflector, λ; so we shall also define λ-proper homomorphisms.

Here is a brief overview of the paper. Following this introduction,
we recall in Section 2 how the frames βL, λL and υL are constructed.
In Section 3 we define β-proper maps, and observe that β-properness
is strictly weaker than properness. Recall, from Vermeulen [20], that a
frame homomorphism is said to be proper if it is closed and its right
adjoint preserves directed joins. Although the definition of β-properness
is in terms of the lifted homomorphism hβ : βL→ βM , we have a char-
acterization (Proposition 3.5) in terms of the right adjoint of the map
one starts with. This characterization quickly yields that a frame L is
compact if and only if the unique homomorphism 2 → L is β-proper
(Corollary 3.7). This should be compared with the result in Chen [6]
which uses the stronger property of properness to characterize compact
frames similarly. Just like proper maps in Tych can be characterized
in terms of compactifications other than the Stone-Cech compactifica-
tion (see, for instance, Engelking [11, Theorem 3.7.16]), there is a similar
characterization of β-proper maps (Proposition 3.9). We end the section
with the ring-theoretic characterization stated in the last sentence in the
abstract (Proposition 3.11).

In Section 4 we define λ-proper and υ-proper maps. As in the case
of β-properness, these are defined in terms of the lifted homomorphisms
hλ : λL → λM and hυ : υL → υM . A pleasant surprise is that the two
notions are equivalent (Proposition 4.4), thus enabling us to dispense
with the rather recalcitrant functor υ and work mainly with the more
accommodating λ in our calculations. Every β-proper map is λ-proper
(Corollary 4.3), but not conversely. Indeed, the homomorphism 2 → L
is λ-proper if and only if L is realcompact (Proposition 4.5).

The last section casts these notions purely in terms of morphisms,
thus giving the discussion a somewhat categorical flavour. The main
result (Proposition 5.3) says, for ε equal to β or λ, a homomorphism
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h : L→M is ε-proper if and only if the diagram

εL
hε
- εM

L

εL

?

h
- M

εM

?

is a “2-pushout” square in the sense that it “pushes out” any wedge of
the following form:

εM

L
ζ
- 2

ξ

?

2 Preliminaries

2.1 A brief background on frames

For a general theory of frames we refer to the text by Johnstone [14]
and Chapter II in [19] by Picado, Pultr and Tozzi. All frames considered
here are assumed to be completely regular. Our notation is standard.
For instance, we denote the top element and the bottom element of a
frame L by 1L and 0L respectively, dropping the subscripts if L is clear
from the context. The frame of open subsets of a topological space X is
denoted by OX.

By a point of L we mean an element p such that p 6= 1 and x∧ y ≤ p
implies x ≤ p or y ≤ p. For regular frames, “point” is synonymous with
“maximal”, where the latter is understood to mean maximal strictly
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below the top. We denote the set of all points of L by Pt(L).

We note that

if h : L → M is an onto frame homomorphism (between reg-
ular frames) and p ∈ Pt(L), then either h(p) = 1 or h(p) ∈
Pt(M).

Indeed, suppose h(p) < 1. Let y ∈ M be such that h(p) ≤ y < 1.
Then p ≤ h∗(y) < 1, so that maximality gives p = h∗(y), and hence
h(p) = hh∗(y) = y. Therefore h(p) ∈ Pt(M).

A frame homomorphism is dense if it maps only the bottom element
to the bottom element, and codense if it maps only the top to the top.
Any dense homomorphism between regular frames is monic, and any co-
dense homomorphisms between regular frames is one-one. By a quotient
map we mean an onto frame homomorphism.

An element a of L is a cozero element if there is a sequence (an) in L
such that an ≺≺ a for each n and a =

∨
an. The set of all cozero elements

of L is called the cozero part of L and is denoted by CozL. It is a sub-
σ-frame of L which generates L if L is completely regular. For further
properties of CozL and cozero elements, in general, see Banaschewski
and Gilmour [3].

2.2 The coreflections βL, λL and υL.

Recall that a full subcategory C of a category A is said to be a coreflective
subcategory if for every object A in A, there is an object γA in C and
a morphism γA : γA → A such that for any morphism f : C → A with
domain in C, there is a unique morphism f̄ : C → γA satisfying γA·f̄ = f ,
that is, such that the following triangle commutes:

C
f̄ - γA

A
�

γA
f
-

The object γA is called the coreflection of A.
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(a) βL, the compact, completely regular coreflection. The cate-
gory KCRregFrm of compact, completely regular frames is a core-
flective subcategory of CRegFrm, the category of completely reg-
ular frames with frame homomorphisms. The compact, completely
regular coreflection of L (the frame counterpart of the Stone-Čech
compactification of Tychonoff spaces), denoted βL, was first con-
structed by Banaschewski and Mulvey [5] as the frame of regular
ideals of L. It can also be realized as the frame of regular ideals of
CozL (see, for instance, Banaschewski and Gilmour [4]). For our
purposes it is convenient to adopt this latter view. We denote the
right adjoint of the join map βL : βL→ L by rL, and recall that, in
view of the way βL is realized here,

rL(a) = {c ∈ CozL | c ≺≺ a}.

(b) λL, the regular Lindelöf coreflection. Using localic language,
Madden and Vermeer [17] have shown that regular Lindelöf locales
form a reflective subcategory of the category of locales by actually
constructing the reflection, λL, of any completely regular locale L.
We recall the construction in frame terms because that is the cate-
gory of discourse in this paper.

Let L be a completely regular frame. An ideal of CozL is a σ-ideal if
it is closed under countable joins. The regular Lindelöf coreflection
of L, denoted λL, is the frame of σ-ideals of CozL. The join map
λL : λL → L is a dense quotient map, and is the attendant core-
flection map. In fact, this is a special case of a more general result
concerning κ-frames (see Madden [16, Proposition 4.4]). We denote
by kL the dense quotient map kL : βL→ λL defined by kL(I) = 〈I〉σ,
where 〈·〉σ signifies σ-ideal generation in CozL.

(c) υL, the realcompact coreflection. Recall that a frame L is said
to be realcompact in case whenever I is a maximal ideal of CozL
with

∨
I = 1, then

∨
S = 1 for some countable S ⊆ I. Realcompact

frames are coreflective in CRegFrm (see, for instance, Banaschewski
and Gilmour [4] and Marcus [18] for details). The realcompact core-
flection of L, denoted υL, is constructed in the following manner.
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For any t ∈ L, let

[t] = {x ∈ CozL | x ≤ t};

so that if c ∈ CozL, then [c] is the principal ideal of CozL generated
by c. The map ` : λL→ λL given by

`(J) =
[∨

J
]
∧
∧
{P ∈ Pt(λL) | J ≤ P}

is a nucleus. The frame υL is defined to be Fix(`). We denote by
`L the dense quotient map λL → υL effected by `. The join map
υL : υL→ L is also a dense quotient map. For any L we have

Coz(λL) = Coz(υL) = {[c] | c ∈ CozL},

a consequence of which is that each of the maps λL : λL → L and
υL : υL→ L is a C-quotient map (see Ball and Walters-Wayland [1]
for the definition of a C-quotient map). Also,

Pt(λL) = Pt(υL).

To see this, recall that if j : M →M is a nucleus, then Pt
(

Fix(j)
)

=
{p ∈ Pt(M) | j(p) = p}. Now let P ∈ Pt(λL). Then, for the nucleus
` : λL→ λL defining υL,

`(P ) =
[∨

P
]
∧
∧
{Q ∈ Pt(λL) | P ≤ Q} =

[∨
P
]
∧ P = P.

Therefore Pt(υL) = Pt(λL) since υL = Fix(`). Lastly, for any a ∈ L,

(λL)∗(a) = (υL)∗(a) = [a].
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3 β-proper maps

We start by motivating how “remainder preservation” can be defined
in the most natural way in CRegFrm without resorting to categorical
machinery. Let f : X → Y be a continuous function between Tychonoff
spaces, and let A ⊆ X and B ⊆ Y . Define a : OX → OA and b : OY →
OB to be the frame homomorphisms induced by the subspace inclusions
iA : A→ X and iB : B → Y respectively. Recall that

(Of)∗(U) = Y − clY f [X − U ]

for each U ∈ OX, so that, in view of X being a T1-space,

(Of)∗(X − {x}) = Y − {f(x)}

for every x ∈ X.

Lemma 3.1. Let f, a and b be as above. Then f [X −A] ⊆ Y −B if and

only if b
(
(Of)∗(p)

)
= 1 for every p ∈ Pt(OX) with a(p) = 1.

Proof. (⇒) Pick x ∈ X such that p = X − {x}. Then a(X − {x}) = 1

implies A∩ (X−{x}) = A, whence x /∈ A. So, by the hypothesis, f(x) ∈

Y −B. But this implies B∩ (Y −{f(x)}) = B, whence b
(
(Of)∗(p)

)
= 1.

(⇐) Let z ∈ X − A. We must show that f(z) ∈ Y − B. Now, p =

X−{z} ∈ Pt(OX) such that a(p) = 1 since z /∈ A. So, by the hypothesis,

b
(
(Of)∗(p)

)
= 1. But, as observed above, (Of)∗(p) = Y − {f(z)}, so

B = B ∩ (Y − {f(z)}), which implies f(z) /∈ B, as required.

This lemma motivates the following definition. Consider the diagram
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L
h
- M

A

a

?
B

b

?

(2)

in CRegFrm, where the downward homomorphisms are quotient maps.

Definition 3.2. Let h, a and b be as in the preceding diagram. We say

h takes a-remainder to b-remainder if a(h∗(p)) = 1 for every p ∈ Pt(M)

with b(p) = 1. If Pt(M) = ∅ or b(p) < 1 for every p ∈ Pt(M), we take

the requirement of the definition to be vacuously satisfied.

In particular, for any homomorphism h : L → M , we shall simply
say the Stone extension hβ : βL→ βM takes remainder to remainder to
mean that it takes βL-remainder to βM -remainder. Since we are working
in Frm rather than Loc, it would perhaps be more appropriate to talk
of a frame homomorphism “co-taking remainder to remainder”; but we
do not feel the inclination to be too pedantic about this.

Definition 3.3. We say a frame homomorphism h : L→M is β-proper

if hβ : βL→ βM takes remainder to remainder.

Observe that if L is compact, then there is no point p of βL with
βL(p) = 1. Thus, any homomorphism into a compact frame is β-proper.
It is clear from Lemma 3.1 that, for any continuous function f : X →
Y , the Stone extension fβ : βX → βY takes remainder to remainder
if and only if (Of)β : β(OY ) → β(OX) takes remainder to remainder.
Consequently, f is a proper map if and only if Of : OY → OX is β-
proper.

Recall that a homomorphism h : L → M is said to be closed if
h∗(h(a)∨b) = a∨h∗(b) for every a ∈ L and b ∈M . In [20], Vermeulen de-
fines a homomorphism to be proper if it is closed and its right adjoint pre-
serves directed joins. In [15], Korostenski and Labuschagne have called
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a homomorphism lax proper if its right adjoint preserves directed joins.
We adhere to this terminology. As we will see, although β-properness is
equivalent to properness in the subcategory of CRegFrm consisting of
the (spatial) frames isomorphic topologies of Tychonoff spaces, it is in
general weaker than properness. Indeed, it is implied by lax properness.

For a discussion on proper frame maps the reader should please con-
sult the papers by Chen [6], He and Luo [13] and Vermeulen [20]. In the
first of these papers the author adopts the frame version of statement
(a) in the characterizations of proper maps of spaces recited in the Intro-
duction as his definition of proper maps of frames (he uses the adjective
“perfect”), and establishes its equivalence to the frame version of (b). In
none of these papers is the concept of taking remainder to remainder as
defined here considered.

Rephrasing, the definition of β-properness says

h : L → M is β-proper precisely if
∨
hβ∗ (I) = 1 for every

I ∈ Pt(βM) with
∨
I = 1.

Seeing that this involves computation “at the Stone-Čech level”, it
might be desirable to have a criterion in terms of the right adjoint of the
map one starts with. Indeed, such is available. In preparation for showing
that, we recall that any homomorphism into a compact frame is proper.
The proofs of this fact that we have seen are somewhat roundabout, so
we give a direct proof. First note that for regular frames,

h : L→M is closed if and only if for every a ∈ L and b ∈M ,
h(a) ∨ b = 1 implies a ∨ h∗(b) = 1.

Indeed, assume this condition holds and let x ≺ h∗(h(a) ∨ b). Then
x∗ ∨ h∗(h(a) ∨ b) = 1, so that, on acting h, we have

1 = h(x∗) ∨ hh∗(h(a) ∨ b)
)
≤ h(x∗) ∨ h(a) ∨ b = h(x∗ ∨ a) ∨ b.

Thus, the stated condition implies x∗∨a∨h∗(b) = 1, so that x ≤ a∨h∗(b),
and hence, by regularity, h∗(h(a)∨b) ≤ a∨h∗(b), thus implying h is closed
as the other inequality holds anyway.

Lemma 3.4. Any homomorphism into a compact frame is proper.
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Proof. Let h : L→M be a frame homomorphism with M compact. We

first show that h is closed. Suppose h(a) ∨ b = 1 for some a ∈ L and

b ∈M . By regularity,

b ∨
∨
{h(x) | x ≺ a} = 1,

and hence, by compactness of M , h(t) ∨ b = 1 for some t ≺ a. Thus

h(t∗) ≤ b, so that t∗ ≤ h∗(b). But a ∨ t∗ = 1, so a ∨ h∗(b) = 1, proving

closedness. Next, let D be a directed subset of M . Take z ≺ h∗(
∨
D) in

L. Then z∗∨h∗(
∨
D) = 1, which implies h(z∗)∨hh∗(

∨
D) = 1, and hence

h(z∗) ∨
∨
D = 1. By compactness of M , this implies h(z∗) ∨ d = 1 for

some d ∈ D. By closedness, z∗ ∨h∗(d) = 1, whence z ≤ h∗(d) ≤
∨
h∗[D].

By regularity this implies h∗(
∨
D) ≤

∨
h∗[D], and hence equality.

We now give a criterion for β-properness which does not require com-
putation with the right adjoint of the lifted map.

Proposition 3.5. A homomorphism h : L→M is β-proper if and only

if
∨
h∗[I] = 1 for every I ∈ Pt(βM) with

∨
I = 1.

Proof. Since the diagram

βL
hβ
- βM

L

βL

?

h
- M

βM

?

commutes, we have βM · hβ = h · βL, which, on taking right adjoints,
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yields hβ∗ · rM = rL · h∗. Now, for any I ∈ βM ,

I =
∨
βM

{rM (a) | a ∈ I},

and this join is directed. So, by Lemma 3.4, we have

hβ∗ (I) =
∨
βL

{hβ∗rM (a) | a ∈ I}.

Consequently,

∨
hβ∗ (I) = βL

(∨
βL

{hβ∗rM (a) | a ∈ I}
)

= βL

(∨
βL

{rLh∗(a) | a ∈ I}
)

=
∨
L

{h∗(a) | a ∈ I}

=
∨
h∗[I].

The result therefore follows.

Corollary 3.6. Lax properness implies β-properness.

Proof. Let h : L→M be a lax proper homomorphism. Let I be a point

of βM with
∨
I = 1. Since

∨
I is a join of a directed set,

∨
h∗[I] = h∗

(∨
I
)

= h∗(1) = 1,

showing that h is β-proper.

In [6], Chen shows that properness of homomorphisms characterizes
compact frames in the sense that a frame L is compact if and only if the
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unique homomorphism π : 2→ L is proper. The weaker notion actually
suffices.

Corollary 3.7. A frame L is compact if and only if the homomorphism

π : 2→ L is β-proper.

Proof. Necessity needs no verification. For the sufficiency, suppose, on

the contrary, that L is not compact. Then βL : βL → L is not codense,

and so there exists J 6= 1βL in βL such that
∨
J = 1. Since βL has

enough points, there is a point I of βL above J , so that
∨
I = 1. By the

hypothesis we have
∨
π∗[I] = 1, which implies π∗(u) = 1 for some u ∈ I,

and hence u = 1. But this is false since I < 1βL.

As one would expect, β-proper maps compose to β-proper maps.
Furthermore, if a composite of two β-proper maps is β-proper, then the
factor on the left of the composition is β-proper, as we demonstrate in
the following corollary.

Corollary 3.8. Let h : L → M and g : M → N be frame homomor-

phisms. Then we have:

1. If both h and g are β-proper, then g · h is β-proper.

2. If g · h is β-proper, then g is β-proper.

Proof. A routine diagram-chasing using the definition shows that (1) is

true. To prove (2), let I ∈ Pt(βN) with
∨
I = 1. If g · h is β-proper,

then
∨

(gh)∗[I] =
∨
h∗g∗[I] = 1, by Proposition 3.5. Thus,

1 = h
(∨

h∗g∗[I]
)

=
∨
h[h∗g∗[I]] ≤

∨
g∗[I],

showing, by Proposition 3.5 again, that g is β-proper.
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It is possible for the composite g · h to be β-proper whilst h is not.
For instance, let L be any non-compact completely regular frame with at
least one point, say p. Let ξ : L → 2 be the homomorphism associated
with p. The composite

βL
βL - L

ξ
- 2

is β-proper (actually, proper) as it maps into a compact frame. The
homomorphism βL : βL → L is not β-proper. Indeed, since L is not
compact, the map βL is not codense, so there is a point I of βL with∨
I = 1. But now, since 1 /∈ I,∨

(βL)∗[I] =
∨
{rL(u) | u ∈ I} =

⋃
{rL(u) | u ∈ I} 6= 1βL.

We now give a characterization of β-proper maps in terms of com-
pactifications. The result extends the spatial characterization of proper
maps between Tychonoff spaces as precisely those f : X → Y such that
for every compactification αY of Y , the extension Fα : βX → αY of
the function f takes remainder to remainder (see, for instance, Engelk-
ing [11, Theorem 3.7.16]). An analogous result, from a categorical per-
spective, is [13, Theorem 1] by He and Luo.

Recall that a compactification of L is a dense quotient map h : M → L
with M compact regular. We shall frequently write a compactification
of L as γL → L, suppressing the name of the homomorphism which we
then take to be γL, or simply γ, if the subscript is unnecessary. Com-
pactifications of L are compared by saying γL→ L ≤ ζL→ L if there
is a frame homomorphism h : γL→ ζL making the triangle

γL
h - ζL

L
�

ζγ
-

commute. Being a dense homomorphism out of a regular frame into a
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compact one, h is then one-one. In particular, for any compactification
γL→ L of L there is a homomorphism γ̄ : γL→ βL such that γ = βL · γ̄,
so that, given any homomorphism h : L → M and any compactification
γL→ L of L, the square

γL
hβ · γ̄

- βM

L

γ

?

h
- M

βM

?

commutes. We now have the following characterization.

Proposition 3.9. The following are equivalent for a frame homomor-

phism h : L→M .

1. h is β-proper.

2. For every compactification γL→ L of L, hβ · γ̄ takes γL-remainder to

βM -remainder.

3. There is a compactification ζL → L of L such that hβ · ζ̄ takes ζ-

remainder to βM -remainder.

Proof. (1)⇒ (2): Let I ∈ Pt(βM) be such that
∨
I = 1. Then,

∨
h∗[I] =

1, by Proposition 3.5 since hβ takes remainder to remainder. Now the

commutativity of the square above implies h · γ = βM · (hβ · γ̄), so that

γ∗ ·h∗ = (hβ · γ̄)∗ · rM . Since γ is onto, this implies h∗ = γ · (hβ · γ̄)∗ · rM .

Now, for any u ∈ I we have rM (u) ≤ I, and hence

h∗(u) = γ(hβ · γ̄)∗rM (u) ≤ γ(hβ · γ̄)∗(I).
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Taking joins over all these u yields

1 =
∨
h∗[I] ≤ γ(hβ · γ̄)∗(I),

which proves that hβ · γ̄ takes γL-remainder to βM -remainder.

(2)⇒ (3): This is trivial.

(3) ⇒ (1): Let p ∈ Pt(βM) with βM (p) = 1. Consequently, by

the hypothesis, ζ
(
(hβ · ζ̄)∗(p)

)
= 1. Since ζ = βL · ζ̄, this implies

βLζ̄(ζ̄)∗h
β
∗ (p) = 1. Hence, βL

(
hβ∗ (p)

)
= 1, since ζ̄ ·(ζ̄)∗ ≤ idβL. Therefore

hβ takes remainder to remainder.

We close this section with a ring-theoretic characterization of β-
proper maps. We refer to Banaschewski [2] for the definition and proper-
ties of the ring RL of real-valued continuous functions on L. See also the
paper by Ball and Walters-Wayland [1] and that by Gutiérrez Garcia,
Kubiak and Picado [12]. Here we recall that the coz map links RL to
L in such a way that, for every frame homomorphism h : L → M , the
induced ring homomorphism Rh : RL → RM , given by Rh(α) = h · α,
satisfies coz(h · α) = h(cozα).

For each p ∈ Pt(βL), the sets Mp and Op defined by

Mp = {α ∈ RL | rL(cozα) ≤ p} and Op = {α ∈ RL | rL(cozα) ≺≺ p}

are ideals of RL. We recall, from Dube [8], the following about maximal
ideals of RL:

(a) Maximal ideals of RL are precisely the ideals Mp for p ∈ Pt(βL).

(b) Every prime ideal of RL is contained in a unique maximal ideal. In
fact, for every prime ideal of Q of RL there is a unique p ∈ Pt(βL)
such that Op ⊆ Q ⊆Mp.

An ideal Q of RL is said to be free if
∨
{cozα | α ∈ Q} = 1, in exact

analogy with the classical case of C(X). For any ideal H of RL, abbre-
viate {cozα | α ∈ H} by coz[H]. It is shown in [7, Lemma 4.4] that, for
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any p ∈ Pt(βL), ∨
coz[Op] =

∨
coz[Mp] = βL(p).

Consequently,

a prime ideal of RL is free if and only if the unique maximal
ideal containing it is free.

In what follows we use subscripts on the M-ideals to indicate where
the ideal in question resides.

Lemma 3.10. Let h : L → M be a frame homomorphism, and let p ∈

Pt(βM). Then M
hβ∗ (p)
L is the unique maximal ideal of RL containing the

prime ideal (Rh)−1[Mp
M ].

Proof. Since βM · hβ = h · βL, and since βL · rL = idL, as βL is onto and

rL is its right adjoint, it follows that βMh
βrL(a) = h(a) for each a ∈ L,

and hence

hβrL(a) ≤ rMh(a). (†)

Now let α ∈ (Rh)−1[Mp
M ]. Then (Rh)(α) = h · α ∈Mp

M , which implies

rM
(

coz(h · α)
)

= rM
(
h(cozα)

)
≤ p.

By (†), this implies hβrL(cozα) ≤ p, so that rL(cozα) ≤ hβ∗ (p), and

hence α ∈M
hβ∗ (p)
L , as required.

Recall that if f : A → B is a ring homomorphism and I is an ideal
of B, then the ideal f−1[I] is called the contraction of I by f . Now, in
light of the foregoing lemma and the discussion preceding it, it follows
easily from the definition that:
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Proposition 3.11. A frame homomorphism is β-proper if and only if

the ring homomorphism it induces contracts free maximal ideals to free

prime ideals.

4 λ-proper maps

The functors β, λ and υ share some analogous results with regard to lifted
homomorphisms hβ : βL→ βM , hλ : λL→ λM and hυ : υL→ υM , for a
given homomorphism h : L→M . For instance, if h satisfies the property
that hβ · (βL)∗ = (βM )∗ · h, then the result in [9, Proposition 3.8] (see
also [10]) states that

h is open ⇐⇒ hβ is open ⇐⇒ hλ is open ⇐⇒ hυ is open.

It is thus natural to investigate the implications that exist between the
maps hβ, hλ and hυ with regard to remainder preservation. As in the
case of the functor β, we introduce the following definitions.

Definition 4.1. A frame homomorphism h : L → M is λ-proper if

hλ : λL → λM takes λL-remainder to λM -remainder. It is υ-proper if

hυ : υL→ υM takes υL-remainder to υM -remainder.

Thus, the definition says

a homomorphism h : L → M is λ-proper if λL(hλ∗(p)) = 1,
for any p ∈ Pt(λM) with λM (p) = 1.

Observe that if M is Lindelöf, then there is no point p of λM such
that λM (p) = 1. Therefore any homomorphism into a Lindelöf frame
is automatically λ-proper. Actually there is a stronger statement. Ba-
naschewski and Gilmour in [4, Proposition 1] show that

L is realcompact if and only if λL(p) 6= 1 for each p ∈ Pt(λL).
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Thus, any homomorphism into a realcompact frame is λ-proper. Conse-
quently, if L is a Lindelöf frame which is not compact, then (in view of
Corollary 3.7) the homomorphism 2→ L is a λ-proper map which is not
β-proper.

The intent of this section is to investigate the relationships between
β-, λ- and υ-properness. As it turns, we shall establish that

“β-proper” =⇒ “λ-proper” ⇐⇒ “υ-proper”, (‡)

with the first implication not reversible, as already observed. It is because
of the equivalence that we have stressed λ-properness in the discussion so
far, and even titled the section as we did with no mention of the functor
υ in it.

As a first step towards proving the implications in (‡), we establish
a quick technical lemma.

Lemma 4.2. Suppose that in the diagram

A
h - B

E
k-

s

-

F
�

t

C

a

?�

m

D

b

?

n

-

the downward morphisms are quotient maps, the triangles commute and

the trapezoid commutes. If h takes a-remainder to b-remainder, then k

takes m-remainder to n-remainder.

Proof. Let p be a point of F with n(p) = 1. Then t∗(p) ∈ Pt(B) and

b(t∗(p)) = nt(t∗(p)) = n(p) = 1.

So the hypothesis on h implies a(h∗t∗(p)) = 1. We must show that
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m(k∗(p)) = 1. Since

1 = ah∗t∗(p) = a
(
(th)∗(p)

)
= a
(
(ks)∗(p)

)
= as∗k∗(p),

and since m · s = a, it follows that

m(k∗(p)) = mss∗k∗(p) = as∗k∗(p) = 1.

Therefore k takes m-remainder to n-remainder.

Corollary 4.3. Every β-proper map is λ-proper.

Proof. In the diagram

βL
hβ - βM

λL
hλ-

k
L

-

λM
�

kM

L

βL

?

h
-�

λL

M

βM

?

λ
M

-

(3)

the triangles commute, and the upper trapezoid commutes.

To prove that λ-properness is equivalent to υ-properness, we need to
recall from [9, Proposition 3.5] that, for any completely regular frame K,
λK = υK · `K . Also, as shown in the preliminaries, `K(p) = p for every
p ∈ Pt(λK), so that Pt(λK) = Pt(υK).

In the following result we also find a condition equivalent to λ-properness
which is similar to that in Proposition 3.5 characterizing β-properness.

Proposition 4.4. For any frame homomorphism h : L → M , the fol-

lowing are equivalent.
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1. h is λ-proper.

2. h is υ-proper.

3. For any I ∈ Pt(λM) with
∨
I = 1,

∨
h∗[I] = 1.

Proof. (1)⇒ (2): Suppose h is λ-proper. In the diagram

λL
hλ - λM

υL
hυ-

`
L

-

υM
�

`M

L

λL

?

h
-

�

υL

M

λM

?

υ
M

-

each of the triangles commutes, and the lower trapezoid also commutes.

It follows therefore by [9, Lemma 3.3] that the upper trapezoid commutes.

Thus, by Lemma 4.2, hυ takes υL-remainder to υM -remainder; that is, h

is υ-proper.

(2) ⇒ (1): Suppose h is υ-proper. Let p ∈ Pt(λM) be such that

λM (p) = 1. We must show that λL(hλ∗(p)) = 1. Since λM = υM · `M and

p = `M (p), we have

υM (p) = υM`M (p) = λM (p) = 1,

and hence υL(hυ∗(p)) = 1 because h is υ-proper, by the present hypoth-

esis. We claim that hλ∗(p) = hυ∗(p). Note that the equality `M (p) = p

implies p ≤ (`M )∗(p), and hence p = (`M )∗(p) since points of any reg-

ular frame are precisely the maximal elements. Further, the equality
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`M · hλ = hυ · `L implies hλ∗ · (`M )∗ = (`L)∗ · hυ∗ . Consequently,

hλ∗(p) = hλ∗(`M )∗(p) = (`L)∗h
υ
∗(p),

which, on applying the onto map `L, yields

hλ∗(p) = `L(hλ∗(p)) = `L(`L)∗h
υ
∗(p) = hυ∗(p).

Thus,

λL(hλ∗(p)) = υL`L(hλ∗(p)) = υL(hλ∗(p)) = υL(hυ∗(p)) = 1,

which shows that h is λ-proper.

(1) ⇔ (3): It suffices to show that
∨
hλ∗(I) =

∨
h∗[I] for each I ∈

Pt(λM). We show that, in fact, this holds for every I ∈ λM . So let

I ∈ λM . Observe that

∨
a∈I

[h∗(a)] =
⋃
a∈I

[h∗(a)]

because the set on the right is an ideal of CozL (as the union is directed),

and, in fact, a σ-ideal since for any sequence (sn) in the set, there is a

sequence (tn) in I such that sn ≤ h∗(tn) for each n, so that h
(∨
sn
)

=∨
h(sn) ≤

∨
tn ∈ I, and hence

∨
sn ≤ h∗

(∨
tn
)
, that is,

∨
sn ∈ [h∗(b)] for

b =
∨
tn ∈ I. We claim that

hλ∗(I) =
∨
a∈I

[h∗(a)].
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Since λM · hλ = h · λL, we have hλ∗ · (λM )∗ = (λL)∗ · h∗, so that hλ∗([a]) =

[h∗(a)], for any a ∈M . Now

hλ
(∨
{[h∗(a)] | a ∈ I}

)
=

∨
{hλ([h∗(a)] | a ∈ I}

=
∨
{hλhλ∗([a]) | a ∈ I}

≤
∨
{[a] | a ∈ I}

≤ I,

which shows that ∨
a∈I

[h∗(a)] ≤ hλ∗(I).

On the other hand, let J be any element of λL with hλ(J) ⊆ I. For any

u ∈ J , h(u) ∈ hλ(J) ⊆ I. Since u ≤ h∗h(u), it follows that u ∈
⋃
a∈I

[h∗(a)],

and hence J ⊆
⋃
a∈I

[h∗(a)]. Thus,

hλ∗(I) ≤
∨
a∈I

[h∗(a)],

and hence equality. Therefore

∨
hλ∗(I) = λL

(∨
{[h∗(a)] | a ∈ I}

)
=

∨
{λL([h∗(a)]) | a ∈ I}

=
∨
{h∗(a) | a ∈ I}

=
∨
h∗[I],

which completes the proof.

Reasoning as we did in the β-case, one shows that the composite of
λ-proper maps is a λ-proper map, and if the composite g ·h is a λ-proper
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map, then g is λ-proper.

Now, seeing that compact frames are precisely the L for which the
map 2 → L is β-proper, one might wonder if Lindelöf frames can be
characterized similarly. A look at the proof of Corollary 3.7 shows that
the spatiality of βL was crucial. Since, in general, λL is not spatial (even
when L is spatial), we cannot adapt that proof. In fact, the result is false,
but almost true in the following sense.

Proposition 4.5. The homomorphism 2→ L is λ-proper if and only if

L is realcompact.

Proof. The “only if” part has already been observed. Conversely, suppose

π : 2 → L is λ-proper. If L is not realcompact, there is a point p of λL

with λL(p) = 1. So, in view of π being λ-proper, πλ∗ (p) is a point of λ2

mapped to the top by λ2, which is impossible since this homomorphism

is an isomorphism.

Remark 4.6. Apropos of realcompact frames, note that if L is realcom-

pact and h : L → M is λ-proper, then M is realcompact. For, if not,

then there is a point I of λM with
∨
I = 1. Then, by virtue of h being

λ-proper, hλ∗(I) is a point of λL with join equal to the top, which is im-

possible since L is realcompact. This strengthens the classical result that

if f : X → Y is a proper map between Tychonoff spaces, and Y is real-

compact, then X is realcompact. In fact, the classical result is a corollary

of the pointfree one because if f is as stated, then Of : OY → OX is

β-proper, and hence a λ-proper map out of a realcompact frame, making

OX realcompact, and hence X realcompact.

Recall that a frame is pseudocompact precisely when every cover by
countably many cozero elements has a finite subcover. In particular,
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L is pseudocompact if and only if kL : βL → λL is an iso-
morphism.

Now, a pseudocompact frame does not distinguish between β-properness
and λ-properness when it comes to homomorphisms mapping into it.
More precisely, we have the following result.

Proposition 4.7. Any homomorphism into a pseudocompact frame is

β-proper if and only if it is λ-proper.

Proof. The one implication needs no verification. Now suppose that M

is a pseudocompact frame and h : L→M is a λ-proper homomorphism.

If M is compact, there is nothing to prove. So suppose M is not compact,

and let p be a point of βM with βM (p) = 1. Then kM (p) is a point of λM

with λM
(
kM (p)

)
= 1. So, since h is λ-proper, λL

(
hλ∗(kM (p))

)
= 1. Since

in diagram (3) – in the proof of Corollary 4.3 – the triangles commute,

and so does the upper trapezoid, we have kM · hβ = hλ · kL, which

implies hβ∗ · (kM )∗ = (kL)∗ · hλ∗ , and hence hβ∗ = (kL)∗ · hλ∗ · kM , since

(kM )∗ · kM = idβM as kM is one-one. Consequently, in light of the

equality λL · kL = βL, we have

βL
(
hβ∗ (p)

)
= βL(kL)∗h

λ
∗(kM )(p)

= λLkL(kL)∗h
λ
∗(kM )(p)

= λL
(
hλ∗(kM )(p)

)
since kL is onto

= 1.

Therefore h is β-proper.

Here is another noteworthy consequence of Lemma 4.2. For brevity,
denote by jK : βK → υK the composite `K · kK : βK → λK → υK .
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Corollary 4.8. Let h : L→M be a frame homomorphism, and consider

the following diagram:

βL
hβ - βM

λL
hλ-

k
L

-

λM
�

kM

υL

jL

?

hυ
-

�

`L

υM

jM

?

`
M

-

The homomorphism hβ takes jL-remainder to jM -remainder if and only

if it takes kL-remainder to kM -remainder.

Proof. Suppose hβ takes jL-remainder to jM -remainder. Let p ∈ Pt(βM)

be such that kM (p) = 1. Then jM (p) = 1. So, by the hypothesis,

jL(hβ∗ (p)) = 1. That is, `LkL(hβ∗ (p)) = 1. Since kL is onto, either

kL(hβ∗ (p) = 1 or kL(hβ∗ (p) ∈ Pt(λL). The latter is not possible since

`L maps points to points. Therefore hβ takes kL-remainder to kM -

remainder.

Conversely, suppose hβ takes kL-remainder to kM -remainder. Let p

be a point of βM with jM (p) = 1. Since kM is onto, kM (p) = 1 or

kM (p) ∈ Pt(λM). The latter would imply `MkM (p) 6= 1, which is a

contradiction. So kM (p) = 1, and hence kL(hβ∗ (p)) = 1, in light of the

current hypothesis. Thus jL(hβ∗ (p)) = 1, as required.
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5 β- and λ-properness in terms of morphisms

The β- and λ-properness properties, as we have defined them, are couched
in a language of both morphisms and elements (or, to be more precise,
points). A desirable criterion, from a categorical perspective, should
preferably be solely in terms of morphisms. Since there is a one-one
correspondence between points of a frame L and homomorphisms L→ 2,
it is reasonable to expect that such a criterion is available. Our goal in
this section is to provide it. To that end, we first note the following
lemma.

Lemma 5.1. Let h : L→M be a quotient map, p ∈ Pt(L), and ξ : L→ 2

the homomorphism associated with p. Then h(p) ∈ Pt(M) if and only if

there is a homomorphism η : M → 2 such that the triangle

L
h - M

2
�

ηξ
-

commutes.

Proof. (⇒) Suppose h(p) ∈ Pt(M). Let η : M → 2 be the homomor-

phism associated with h(p). Now, for any x ∈ L, if ξ(x) = 0, then x ≤ p,

hence h(x) ≤ h(p), whence ηh(p) = 0. On the other hand, for any z ∈ L,

if ηh(z) = 0, then

z ≤ h∗η∗(0) = h∗h(p) = p,

whence ξ(z) = 0. Therefore η · h = ξ, so that is η is as required.

(⇐) Suppose η : M → 2 is as postulated. Then ηh(p) = ξ(p) = 0.

Therefore h(p) 6= 1, and hence h(p) ∈ Pt(M) since h is onto.

Recall diagram (2) preceding Definition 3.2.
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Lemma 5.2. In diagram (2), h takes a-remainder to b-remainder if and

only if every homomorphism ξ : M → 2 factorizes through b : M → B

whenever the composite map ξ · h : L→ 2 factorizes through a : L→ A.

Proof. (⇒) Suppose h takes a-remainder to b-remainder, and let ξ : M →

2 be a homomorphism such that the composite ξ · h : L → 2 factorizes

through a : L→ A. So there is a homomorphism η : A→ 2 which makes

the triangle

L
a - A

2
�

η
ξ · h -

commute. Put p = ξ∗(0), so that p is the point of M associated with ξ.

Now

ηa
(
h∗(p)

)
= ξh

(
h∗(p)

)
≤ ξ(p) = 0.

Therefore a
(
h∗(p)

)
6= 1. Since the hypothesis in the implication we

are proving is that h takes a-remainder to b-remainder, it follows that

b(p) 6= 1. Consequently b(p) ∈ Pt(B). Since ξ is the homomorphism

M → 2 associated with p, it follows from Lemma 5.1 that ξ factorizes

through b : M → B.

(⇐) Suppose, by way of contradiction, that h does not take a-remainder

to b-remainder. Then there is a point p of M with b(p) = 1, for which

a
(
h∗(p)

)
6= 1. By Lemma 5.1, if ξ : L → 2 is the homomorphism asso-

ciated with h∗(p), there is a homomorphism η : A → 2 that makes the

triangle
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L
a - A

2
�

ηξ
-

commute. Let τ : M → 2 be the homomorphism associated with p. We

claim that τ · h = ξ. To see this, note that, for any x ∈ L, if ξ(x) = 0,

then x ≤ h∗(p), so that τh(x) ≤ τhh∗(p) ≤ τ(p) = 0. On the other hand,

if z is any element of L with τh(z) = 0, then z ≤ h∗τ∗(0) = h∗(p), and

hence ξ(z) = 0. Thus, τ · h = ξ. So τ has the property that τ · h : L→ 2

factorizes through a : L→ A. Therefore, by the current hypothesis, there

is a homomorphism κ : B → 2 such that the triangle

M
b - B

2
�

κ
τ
-

commutes. But this implies τ(p) = κb(p) = κ(1) = 1, which is false since

τ(p) = 0.

The desired element-free characterization of β-proper and λ-proper
maps now follows. Recall how a 2-pushout square was described at the
end of the Introduction.

Proposition 5.3. For ε equal to β or λ, any homomorphism h : L→M

is ε-proper if and only if the diagram
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εL
hε
- εM

L

εL

?

h
- M

εM

?

is a 2-pushout square.

Proof. If the diagram is a 2-pushout, then h is ε-proper by the last

lemma. Conversely, suppose h is ε-proper and consider a diagram of the

form

εL
hε- εM

L

εL

?
h- M

εM

?

2

ξ

-

τ

-
%

-

where the outer quadrilateral commutes, and the dotted line indicates a

morphism to be filled in. The composite ξ · hε : εL→ 2 factors through

εL : εL→ L, so in light of h being an ε-proper map, Lemma 5.2 furnishes

a homomorphism τ : M → 2 which makes the upper triangle in the

diagram above commute. So it remains to show that the lower triangle

also commutes, and that τ is unique with this property. The latter

is immediate because if δ also satisfies ξ = δ · εM , then, in light of
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εM · (εM )∗ = idM , as εM is onto, we have

τ = ξ · (εM )∗ = δ.

Let a ∈ L. Then (εL)∗(a) is an element of εL such that, by commu-

tativity of the outer quadrilateral,

ξhε
(
(εL)∗(a)

)
= %εL

(
(εL)∗(a)

)
= %(a),

since εL ·(εL)∗ = idL as εL is onto. On the other hand, by commutativity

of the inner square and the upper triangle, we have

h(a) = hεL(εL)∗(a) = εMh
ε
(
(εL)∗(a)

)
,

so that

τh(a) = τεMh
ε(εL)∗(a) = ξhε

(
(εL)∗(a)

)
= %(a).

Therefore τ · h = %, showing the desired commutativity, and thus com-

pleting the proof.
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