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The ring of real-continuous functions on a
topoframe

A.A. Estaji, A. Karimi Feizabadi, and M. Zarghani

Abstract. A topoframe, denoted by Lτ , is a pair (L, τ) consisting of a frame
L and a subframe τ all of whose elements are complementary elements in L.
In this paper, we define and study the notions of a τ -real-continuous function
on a frame L and the set of real continuous functions RLτ as an f -ring. We
show that RLτ is actually a generalization of the ring C(X) of all real-valued
continuous functions on a completely regular Hausdorff space X. In addition,
we show that RLτ is isomorphic to a sub-f -ring of Rτ. Let τ be a topoframe
on a frame L. The frame map α ∈ Rτ is called L-extendable real continuous
function if and only if for every r ∈ R,

∨L
r∈R(α(−, r)∨α(r,−))′ = >. Finally,

we prove thatRLτ ∼= RLτ as f -rings, whereRLτ is the set all of L-extendable
real continuous functions of Rτ .

1 Introduction

Pointfree topology (frame theory) focuses on the open sets rather than the
points of a space. The ring of real continuous functions in pointfree topology
was first created in 1991 by Ball and Hager (see [2]). A systematic and in-
depth study of the ring of real continuous functions in pointfree topology
was undertaken by B. Banaschewski in the 1997 (see [4]), and subsequently
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the algebraic aspects of this f -ring studied by T. Dube [5–8] and others
[1, 9–12, 14].

In the next section, we review some basic notions and properties of
frames and the ring of real functions on a frame τ , denoted by Rτ . In
addition, we will present the notion of real-valued functions and also, a
topoframe, what we know as modified pointfree topology. Modified pointfree
topology focuses on the power set P(X) accompanied by the open sets OX
rather than the points of the space X, and deals with abstractly defined as
algebraic structures consisting of “a lattice of a power set with a sublattice
of open sets”, called topoframe.

In Section 3, the concept of τ -real-continuous functions RLτ will be
introduced. Then, we show that RLτ is actually a generalization of C(X),
the f -ring of all continuous functions from a space X into the set R (see
Theorem 3.3). For more information about C(X), see [13].

In Section 4, we show that RLτ is isomorphic to a sub-f -ring of Rτ (see
Theorem 4.4). Also, the f -ring RLτ is a semiprime and archimedean ring
(see Corollary 4.5).

In Section 5, in Theorem 5.4, it is proved that there exists a Boolean
algebra B such that τ is a topoframe on B and RLτ is also isomorphic to
a sub-f -ring of RBτ .

In the last section, the concept of an L-extendable real continuous func-
tion is introduced (see Definition 6.4). Finally, in Theorem 6.9, it is proved
that RLτ ∼= RLτ as f -rings, where RLτ is the set of all L-extendable real
continuous functions of Rτ .

2 Preliminaries

In this section, we first gather together the basic facts about frames and rings
of real continuous functions on frames, which will be used in the sequel. For
further information see [16, 17] on frames and [1, 4] on rings of real functions
on frames.

Recall that a frame is a complete lattice L in which the distributive law

x ∧
∨
S =

∨
{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom
element of L by > and ⊥, respectively. The frame of open subsets of a



The ring of real-continuous functions ... 77

topological space X is denoted by OX.
A subset S of the poset T is said to be dense (or order dense) in T if each

element of T is the sup and the inf of some subsets of S. A completion of
the poset P is a pair (C;ϕ) where C is a complete lattice and ϕ : P −→ C
is an embedding of P onto a dense subset of C.

A frame homomorphism (or a frame map) is a map between frames which
preserves finite meets and arbitrary joins, including the top and the bottom
elements.

The pseudocomplement of an element a of a frame L is the element

a∗ =
∨
{x ∈ L : x ∧ a = ⊥} ,

and the complement of a, if it exists, is denoted by a′.

Proposition 2.1. [17, p. 332] (First De Morgan law). In a Heyting
algebra, ∧

i

a∗i = (
∨
i

ai)
∗

whenever the supremum
∨
i ai exists.

Let L be a frame (locale) and a, b ∈ L. The relation ≺ on L given by

b ≺ a⇔ b∗ ∨ a = 1.

The set R(L) of all frame homomorphisms from L(R) to L has been
widely studied as an f -ring in [4]. Recall that the frame of reals is the
frame L(R) generated by all ordered pairs (p, q), with p, q ∈ Q, subject to
the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).
(R2) (p, q) ∨ (r, s) = (p, s), whenever p ≤ r < q ≤ s.
(R3) (p, q) =

∨
{(r, s)| : p < r < s < q}.

(R4) > =
∨
{(p, q) : p, q ∈ Q}.

For (p, q) ∈ Q×Q, we put

〈p, q〉 := {x ∈ Q : p < x < q}.

and

Kp, qJ:= {x ∈ R : p < x < q}.
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Corresponding to every continuous operation � : Q2 → Q (in particular
� ∈ {+, . ,∧,∨}), we have an operation on R(L), denoted by the same
symbol �, given by:

(α � β)(p, q) =
∨
{α(r, s) ∧ β(u,w) :< r, s > � < u,w >⊆< p, q >}

for every α, β ∈ RL, where < r, s > � < u,w >⊆< p, q > means that for
each x ∈< r, s > and y ∈< u,w >, we have x � y ∈< p, q >.

We can see in [15] that a real-valued function on a frame L is a frame
homomorphism f : P(R) → L, where one assumes (P(R),⊆) is a complete
Boolean algebra. Let F (L) be the set of all real-valued functions on a frame
L. Let � : R×R→ R be an operation on R (in particular, � ∈ {+, . ,∧,∨}).
For every f, g ∈ F (L), define f � g : P(R)→ L by

(f � g)(X) =
∨
{f(Y ) ∧ g(Z) : Y � Z ⊆ X},

where Y � Z = {y � z : y ∈ Y, z ∈ Z}.

Lemma 2.2. [15] Let f, g be two real-valued functions on a frame L. Then,
for every � ∈ {+, .,∨,∧}, the following statements hold.

(1) (f � g)(X) =
∨
{f({x}) ∧ g({y}) : x � y ∈ X}, for any X ∈ P(R).

(2) (f � g)(U) =
∨
{f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ � Ku, vJ⊆ U}, for any U ∈

O(R).

(3) f = g if and only if f({r}) = g({r}), for any r ∈ R.

Theorem 2.3. [15] (F (L),+, . ,∨,∧) is an f -ring.

As we can see in [18], we managed to modify pointfree topology and
talked about topoframes and TFrm, the category of topoframes, in the
general case. Now, we provide a neat definition of topoframes and topoframe
maps as a necessary adjunct to this study and do not deal with it in a
considerable detail.

Definition 2.4. A topoframe is a pair (L, τ), abbreviated Lτ , consisting of a
frame (L;∧,∨,⊥,>) and a subset τ of L satisfying the following conditions:

1. Every element p of τ has a complement p′ in L.
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2. The subset τ of L is a subframe of L.

The elements of L belonging to τ are called the open elements of L. An
element in L is said to be closed if it is the complement of an open element.
The set of all closed elements is denoted by τ ′ := {p′ : p ∈ τ}.

Definition 2.5. Let τi be a topoframe on a frame Li, for every i = 1, 2.
A frame homomorphism f : L1 → L2 is called a (τ1, τ2)-homomorphism if
f(τ1) ⊆ τ2.

3 A generalization of C(X)

At the start of this section, we show that RLτ is actually a sub-f -ring of
F (L). Hereafter, the real line R is always assumed to be endowed with the
natural topology O(R).

Definition 3.1. Let τ be a topoframe on a frame L. An (O(R), τ)-homomo-
rphism f : P(R) → L is called a τ -real-continuous function on L (or a real
continuous function on Lτ ). The set of all real-continuous functions on Lτ
is denoted by RLτ .

Theorem 3.2. For every topoframe Lτ , RLτ is a sub-f -ring of F (L).

Proof. Obviously, RLτ ⊆ F (L). Let � ∈ {+, .,∨,∧} be an operation on the
f -ring F (L). If f, g ∈ RLτ , then for each p, q ∈ Q, by Lemma 2.2,

(f � g)(Kp, qJ) =
∨
{f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ � Ku, vJ⊆Kp, qJ}

belongs to τ , because f(O(R)) ⊆ τ and g(O(R)) ⊆ τ . Therefore, f � g ∈
RLτ , by Definition 2.5. Thus, RLτ is a sub-f -ring of F (L).

That RLτ is a generalization of C(X) is considered in the following
theorem.

Theorem 3.3. The assignment θ(f) = f−1 from C(X) to R(P(X)O(X))
is an f-ring isomorphism, where f−1(A) = {x ∈ X | f(x) ∈ A} for all
A ∈ P(R).



80 A.A. Estaji, A. Karimi Feizabadi, and M. Zarghani

Proof. Obviously, θ is a function. Let f, g ∈ C(X) and f−1 = g−1. Then
for every x ∈ X,

x ∈ f−1({f(x)}) = g−1({f(x)}),
which follows that f(x) = g(x). Hence f = g. Therefore, θ is a one-one
function.

To show that θ is an onto function, let g : P(R) −→ P(X) be a real
continuous function on P(X). Define h : X −→ R given by

h(x) = λ iff x ∈ g({λ})

for any x ∈ R. Since {g({λ}) |λ ∈ R, g({λ}) 6= ∅}λ∈R is a partition for
X, h is a function with domain X. The equality θ(h) = h−1 = g follows
immediately from the definition. The function h is a continuous function
since h−1 = g and g assigns each open set of R to an open set of X, by
definition.

Suppose f, g ∈ RX , r ∈ R and � ∈ {+, .,∧,∨}. We show that θ preserves
all �’s.

(θ(f)� θ(g))({r}) = (f−1 �g−1)({r}) =
⋃
{f−1({a})∩g−1({b}) | a� b = r} ,

by Lemma 2.2. Moreover,

θ(f � g)({r}) = (f � g)−1({r}) = {x ∈ X | (f � g)(x) = r}.

Let z ∈ (θ(f) � θ(g))({r}). Then there exist a, b ∈ R with a � b = r such
that z ∈ f−1({a}) ∩ g−1({b}), and thus

(f � g)(z) = f(z) � g(z) = a � b = r,

which follows that z ∈ θ(f � g)({r}). Hence,

(θ(f) � θ(g))({r}) ⊆ θ(f � g)({r}).

To establish the reverse inclusion, consider z ∈ θ(f � g)({r}), then

f(z) � g(z) = (f � g)(z) = r .

Since z ∈ f−1({f(z)})∩g−1({g(z)}), we conclude that z ∈ (θ(f)�θ(g))({r}).
Hence,

θ(f � g)({r}) ⊆ (θ(f) � θ(g))({r}).
Therefore θ(f � g) = θ(f) � θ(g). This completes the proof.



The ring of real-continuous functions ... 81

4 RLτ is a sub-f-ring of Rτ

The main purpose of this section is to show that RLτ is isomorphic to a
sub-f -ring of Rτ . Throughout this paper we assume that j is the frame
isomorphism

j : L(R) −→ O(R)

(p, q) 7−→ Kp, qJ,

and i : τ −→ L is the inclusion map. Also, for every f ∈ RLτ , the composi-
tion f ◦ j from LR to L (with L replaced by τ) is denoted by rf . Evidently,
rf ∈ Rτ .

Remark 4.1. For every f ∈ RLτ and A ⊆ R, the complement of f(A) is,
by definition, (f(A))′, abbreviated f(A)′. It is immediately evident from
the definition of the complement that f(A)′ = f(R \A).

Proposition 4.2. Let L be a frame and f : P(R) → L be a frame map.
Then f also preserves arbitrary meet.

Proof. Let {Ai} ⊆ P(R). Then

f(
⋂
iAi) = f((

⋃
iA
′
i)
′)

= f(
⋃
iA
′
i)
′ by Remark 4.1

= (
∨
i f(A′i))

′

=
∧
i f(A′i)

′ by Lemma 2.1

=
∧
i f(Ai) by Remark 4.1

This completes the assertion.

Lemma 4.3. Let Lτ be a topoframe, then for every f, g ∈ RLτ , the follow-
ing properties hold.

(1) The following diagram commutes.
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τrf

L
f

L(R)

j

P(R)

i

-

6

-

6

Also, rf is the unique real continuous function on τ such that i ◦ rf = f ◦ j.

(2) If rf = rg, then f = g.

(3) r(f�g) = rf � rg, for every � ∈ {+, .,∧,∨}.

Proof. (1). For every p, q ∈ Q, we have

(i ◦ rf )(p, q) = (i ◦ f ◦ j)(p, q)

= (i ◦ f)(Kp, qJ)

= i(f(Kp, qJ))

= f(Kp, qJ)

= (f ◦ j)(p, q).

Therefore, i ◦ rf = f ◦ j. The proof of uniqueness is trivial. (2). For
every r ∈ R, we have

f({r}) = f(
⋂
{Kp, qJ | p, q ∈ Q, p < r < q})

=
∧
{f(Kp, qJ) | p, q ∈ Q, p < r < q} by Proposition 4.2

=
∧
{(f ◦ j)(p, q) | p, q ∈ Q, p < r < q}

=
∧
{rf (p, q) | p, q ∈ Q, p < r < q}

=
∧
{rg(p, q) | p, q ∈ Q, p < r < q}

=
∧
{(g ◦ j)(p, q) | p, q ∈ Q, p < r < q}

=
∧
{g(Kp, qJ) | p, q ∈ Q, p < r < q}

= g(
⋂
{Kp, qJ | p, q ∈ Q, p < r < q}) by Proposition 4.2

= g({r}).
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Hence f = g, by Lemma 2.2.
(3). By Lemma 2.2, we have

rf�g(p, q) = (f � g) ◦ j(p, q)
= (f � g)(Kp, qJ)
=

∨
{(f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ � Ku, vJ⊆Kp, qJ}

=
∨
{(f ◦ j)(r, s) ∧ (g ◦ j)(u, v) : Kr, sJ � Ku, vJ⊆Kp, qJ}

=
∨
{rf (r, s) ∧ rg(u, v) : < r, s > � < u, v >⊆< p, q >}

= (rf � rg)(p, q),

for every p, q ∈ Q. Therefore, rf�g = rf � rg.

In [15], we show that F (L) is isomorphic to a sub-f -ring of RL and
consequently RLτ is too. In [3], Banaschewski proves that if h : M −→
L is a dense frame homomorphism, then the f -ring homomorphism Rh :
RM −→ RL is injective, which then makes RM isomorphic to some sub-f-
ring of RL. Note that the following theorem has also a good idea to extract
the most interesting sub-ring RLτ from Rτ .

Theorem 4.4. RLτ is isomorphic to a sub-f -ring of Rτ .

Proof. By Lemma 4.3, the map r : RLτ −→ Rτ given by r(f) = rf is an
f -ring monomorphism as desired.

Corollary 4.5. The f -ring RLτ is a semiprime and archimedean ring.

Proof. Rτ is semiprime and archimedean (see [4]), and consequently, so is
RLτ , by Theorem 4.4.

An immediate consequence of this last theorem is that for every f, g ∈
R(Lτ ), the following statements are equivalent:

(1) f ≤ g.

(2) rf ≤ rg.

(3) For every p ∈ Q, f(p,+∞) ≤ g(p,+∞).

(4) For every q ∈ Q, f(−∞, q) ≥ g(−∞, q).
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5 Boolean algebras

In this section, we show that if Lτ is a topoframe, then there exists a
complete Boolean algebra B such that τ is a topoframe on B and RLτ is
isomorphic to a sub- f -ring of R(Bτ ).

It is well-known that if L is a pseudocomplemented distributive lattice,
then

BL := {a ∈ L | a∗∗ = a}

with a ∨BL b := (a ∨L b)∗∗ and a ∧BL b := a ∧L b, for every a, b ∈ BL,
is a Boolean algebra. Also for a frame L, the subset BL is a complete
Boolean algebra, with the meet as in L and join (

∨L
i ai)

∗∗, was known
as Booleanization of L and in localic language, it is the smallest dense
sublocale of L. Nonetheless, we look now at the weaker conditions on L to
make Booleanization.

Lemma 5.1. If L is a pseudocomplemented distributive lattice, then for
every {ai}i∈I ⊆ BL such that the supremum {ai}i∈I exists in L, we have

BL∨
i

ai = (
L∨
i

ai)
∗∗,

and hence if L is a frame, then BL is a complete Boolean algebra.

Proof. First, note that ≤BL=≤L, because ∧BL = ∧L. Let {ai}i∈I ⊆ BL,
then we have

ai ≤L
∨L
i ai ⇒ (

∨L
i ai)

∗ ≤L a∗i
⇒ ai = a∗∗i ≤L (

∨L
i ai)

∗∗

⇒ ai ≤BL (
∨L
i ai)

∗∗

for every i ∈ I. Now, we assume that c ∈ BL is an upper bound for {ai}i∈I .
Hence, ai ∧L c = ai ∧BL c = ai, that is ai ≤L c for every i ∈ I. So that we
have ∨L

i ai ≤L c ⇒ c∗ ≤L (
∨L
i ai)

∗

⇒ (
∨L
i ai)

∗∗ ≤L c∗∗ = c

⇒ (
∨L
i ai)

∗∗ ≤BL c.

Therefore,
∨BL
i ai = (

∨L
i ai)

∗∗.
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Proposition 5.2. Let L be a frame and N a subframe of L. Then

N∗∗ := {n∗∗ : n ∈ N}

is a topoframe on BL, where n∗ =
∨
{x ∈ L : x ∧ n = ⊥} .

Proof. Define the mapping θ : L −→ BL by θ(a) = a∗∗ for any a ∈ L. Let
{ai}i ⊆ L. Then, by Proposition 2.1, we have∧

i

a∗∗∗i =
∧
i

ai
∗ iff (

∨
i

a∗∗i )∗ = (
∨
i

ai)
∗ iff (

∨
i

a∗∗i )∗∗ = (
∨
i

ai)
∗∗.

Therefore,

θ(
∨
i

ai) = (
∨
i

ai)
∗∗ = (

∨
i

a∗∗i )∗∗ =

BL∨
i

a∗∗i =

BL∨
i

θ(ai) .

Moreover, for every a, b ∈ L,

θ(a ∧ b) = (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ = a∗∗ ∧BL b∗∗ = θ(a) ∧BL θ(b) .

Hence θ is a frame map. Clearly, N∗∗ := θ(N) be a subframe of BL. Since
BL is a complete Boolean algebra, N∗∗ is a topoframe on BL.

Let L be a frame and M be a completion of L. Then L∗∗ is a topoframe
on BM . It is worth looking at another example. Let f : P(R) → L is a
frame map. Then f(L), the image of L under f , is in fact a subframe of L.
So we conclude that f(L) is a topoframe on BL. Marvelously, f(L) forms a
complete Boolean algebra not only by meet and join of L, but also by meet
and join of BL.

Corollary 5.3. Let L be a frame.

(1) Let N be a subframe of L. For any a, b ∈ N , if a∗ = b∗ implies a = b,
then N is an isomorphism to a subframe of BL.

(2) let τ be a topoframe on L. Then τ is a topoframe on BL.

(3) L is a complete Boolean algebra if and only if for every a, b ∈ L,
a∗ = b∗ implies a = b.
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Proof. (1). By Proposition 5.2, it suffices to prove that the restriction of θ
to N is one-to-one. For, let a, b ∈ N such that a∗∗ = b∗∗. So that a∗ = b∗

and then a = b, by hypothesis.
(2). By part (1), τ = τ∗∗ is a subframe of BL, and since all elements of

τ are complementary elements in L and also in BL, we infer that τ be a
topoframe on BL.

(3). One direction of this equivalence is obvious. To prove the converse
direction, by Proposition 5.2, it suffices to prove that θ : L −→ BL with
θ(a) = a∗∗ is bijective. Note that BL is also equal to the set {a∗∗ : a ∈ L};
and hence θ is a onto map. To prove that θ is a one-to-one map, use an
argument similar to the proof of part (1). Hence θ is an isomorphism, by
hypothesis.

The connection between RLτ and R(BL)τ given more generally in the
following thereom. It is worth mentioning that if f ∈ RLτ , the composition
f∗∗ = θ ◦ f is clearly in R(BL)τ , where θ is the frame map introduce in
Proposition 5.2.

Theorem 5.4. Let τ be a topoframe on a frame L. Then, the mapping

ϕ : RLτ −→ R(BL)τ

f 7−→ f∗∗

is an f -ring monomorphism.

Proof. By definition of BL, if A,B ∈ P(R), then

(f(A∩B))∗∗ = (f(A)∧f(B))∗∗ = f(A)∗∗∧f(B)∗∗ = ϕ(f)(A)∧BLϕ(f)(B).

Also, if {Aλ}λ∈Λ
⊆ P(R), then, by Lemma 5.1,

f∗∗(
⋃
λ∈Λ

Aλ) = (f(
⋃
λ∈Λ

Aλ))∗∗ = (

L∨
λ∈Λ

f(Aλ))∗∗ =

BL∨
λ∈Λ

f(Aλ).

Hence f∗∗ : P(R) → BL is a frame map, and by Corollary 5.3, f∗∗ is
real-continuous.

If f, g ∈ RLτ and ϕ(f) = ϕ(g), then

f(A) = f(A)∗∗ = ϕ(f)(A) = ϕ(g)(A) = g(A)∗∗ = g(A)
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for every A ∈ P(R). So f = g and hence ϕ is a one-one frame map.

If f, g ∈ RLτ and A ∈ P(R), then

ϕ(f � g)(A) = (f � g)∗∗(A)

= ((f � g)(A))∗∗

= (
∨L{f({x}) ∧ g({y}) : x � y ∈ A})∗∗

=
∨BL{f({x}) ∧ g({y}) : x � y ∈ A} by Lemma 5.1

=
∨BL{f({x}) ∧BL g({y}) : x � y ∈ A}

=
∨BL{(f({x}))∗∗ ∧BL (g({y}))∗∗ : x � y ∈ A}

=
∨BL{ϕ(f)({x}) ∧BL ϕ(g)({y}) : x � y ∈ A}

= (ϕ(f) � ϕ(g))(A)

for every � ∈ {+, .,∧,∨}. Therefore, ϕ is an f -ring embedding.

Remark 5.5. Given a topoframe Lτ , let M = 〈τ ∪ τ ′〉, the subframe of L
generated by τ ∪ τ ′. Then, every τ−real continuous function f : P(R)→ L
factors through M , since f(X) =

∨L
x∈X f({x}) ∈ 〈τ ′〉 ⊆M for every X ⊆ R.

It is clearly still a τ−real continuous function, when we consider it as taking
values in M . So RLτ = RMτ , and we can embed RLτ into R(BM)τ .

6 L-extendable real continuous functions

The problem that “when RLτ is isomorphic to Rτ?” is not still solved. If
the mapping r given in Theorem 4.4 were onto, we’d be able to replace any
Rτ by RLτ for some frame L. However, our attempt to do this, caused to
consider the extendability of a real continuous function on a frame to a real
continuous function on a topoframe, as the following related results shows.

Definition 6.1. Let L be a frame. A real-trail on L is a map t : R −→ L
such that

1.
∨
x∈R t(x) = >,

2. t(x) ∧ t(y) = ⊥ for any x, y ∈ R with x 6= y.



88 A.A. Estaji, A. Karimi Feizabadi, and M. Zarghani

Lemma 6.2. For any real-trail t on a frame L,

ϕ : P (R) −→ L

X 7−→
∨
x∈X t(x)

is a frame map.

Proof. We check the conditions of the frame map for ϕ. It is clear that
ϕ(∅) = ⊥. By condition (1) of Definition 6.1,

ϕ(R) =
∨
x∈R

t(x) = > .

Let X,Y ∈ P (R). Then

ϕ(X) ∧ ϕ(Y ) =
∨
x∈X t(x) ∧

∨
y∈Y t(y)

=
∨
x∈X,y∈Y (t(x) ∧ t(y))

=
∨
r∈X∩Y t(r) Definition 6.1(2)

= ϕ(X ∩ Y ).

For every {Xi}i ⊆ P (R), we have

ϕ(
⋃
iXi) =

∨
x∈

⋃
iXi

t(x)

=
∨
i

∨
r∈Xi t(x)

=
∨
i ϕ(Xi).

This completes the proof.

Lemma 6.3. Let M be a frame and let L be a regular frame. If f, g : L −→
M are frame morphisms such that for every a ∈ L, f(a) ≤ g(a) , then f = g.

Proof. The frame L is a regular, so a =
∨
t≺a t, and hence

g(a) =
∨
t≺a

g(t) ≤ f(a),
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because

t ≺ a ⇒ t∗ ∨ a = >

⇒ f(t∗) ∨ f(a) = f(>) = >

⇒ g(t∗) ∨ f(a) = > since f(t∗) ≤ g(t∗)

⇒ g(t)∗ ∨ f(a) = > since g(t∗) ≤ (g(t))∗

⇒ g(t) ≺ f(a)

⇒ g(t) ≤ f(a).

Definition 6.4. Let τ be a topoframe on a frame L. The frame map α ∈ Rτ
is called L-extendable real continuous function if and only if for every r ∈ R,

L∨
r∈R

(α(−, r) ∨ α(r,−))′ = > ,

where (−, r) =
∨
s∈Q
s�r

(−, s) and (r,−) =
∨
s∈Q
r�s

(s,−).

Example 6.5. For every f ∈ RLτ , the mapping rf given at the beginning
of this section is L-extendable, because∨L

r∈R(rf (−, r) ∨ rf (r,−))′ =
∨L
r∈R(fK−, rJ∨fKr,−J)′

=
∨L
r∈R(f(R− {r})′

=
∨L
r∈R(f({r})

= > .

Let Lτ be a topoframe. The set of all L-extendable real continuous
functions of Rτ denoted by RL(τ).

Proposition 6.6. Let Lτ be a topoframe. For every L-extendable map
α ∈ Rτ , the following properties hold.

(1) The mapping eα, defined by

eα(S) =

L∨
x∈S

(α(−, x) ∨ α(x,−))′ (S ∈ P(R)),

is a frame homomorphism of P(R) into L.
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(2) Let i and j be functions given in the beginning of this section, then
the following diagram commutes.

τα

L
eα

L(R)

j

P (R)

i

-

6

-

6

The frame map eα is an (O(R), τ)-homomorphism. Also, eα is the
unique real continuous function on Lτ such that eα ◦ j = i ◦ α. More-
over, eα can be redefined by

eα(S) =
∨
s∈S

∧
{α(p, q) | p < s < q, p, q ∈ Q} .

(3) For every β, γ ∈ RL(τ), if eβ = eγ, then β = γ.

Proof. (1). For any x ∈ R,

tα(x) := (α(−, x) ∨ α(x,−))′

is a real-trail on L, since
∨L
x∈R tα(x) = >, by hypothesis, and for any

x, y ∈ R such that x 6= y,

tα(x) ∧ tα(y) = (α(−, x) ∨ α(x,−))′ ∧ (α(−, y) ∨ α(y,−))′

= (α(−, x) ∨ α(x,−) ∨ (α(−, y) ∨ α(y,−))′

= (>)′ since x 6= y and α preserves suprema

= ⊥ .

Hence eα(S) =
∨L
x∈S tα(x) is a frame map, by Lemma 6.2.

(2). For every p, q ∈ Q, we have

(eα ◦ j)((p, q)) = eα(Kp, qJ)

=
∨L

x∈R
p�x�q

(α(−, x) ∨ α(x,−))′

≤ α(p, q)

= i ◦ α(p, q) .
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Since O(R) is a regular frame and eα◦j and i◦α are frame maps, by Lemma
6.3, we conclude that eα ◦ j = i ◦ α.

To prove that eα ∈ RLτ , it suffices to show that eα(Kp, qJ) ∈ τ , for every
p, q ∈ Q. If p, q ∈ Q, then we have

eα(Kp, qJ) = (eα ◦ j)((p, q))
= (i ◦ α)((p, q))

= α(p, q) ∈ τ.

Let f : P(R) −→ L be a (O(R), τ)-homomorphism such that f ◦ j = i ◦ α,
then for every S ∈ P(R), using Proposition 4.2,

f(S) = f(
⋃
s∈S{s})

=
∨
s∈S f({s})

=
∨
s∈S f({

∧
{Kp, qJ | p < s < q, p, q ∈ Q})

=
∨
s∈S

∧
{f(Kp, qJ) | p < s < q, p, q ∈ Q}

=
∨
s∈S

∧
{(f ◦ j)(p, q) | p < s < q, p, q ∈ Q}

=
∨
s∈S

∧
{(i ◦ α)(p, q) | p < s < q, p, q ∈ Q}

=
∨
s∈S

∧
{(eα ◦ j)(p, q) | p < s < q, p, q ∈ Q}

=
∨
s∈S

∧
{eα(Kp, qJ) | p < s < q, p, q ∈ Q}

=
∨
s∈S eα(

∧
{Kp, qJ | p < s < q, p, q ∈ Q})

=
∨
s∈S eα({s})

= eα(
⋃
s∈S{s})

= eα(S)

to give eα is unique as required.
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(3). Let eγ = eβ. Then

α(p, q) = (i ◦ α)((p, q))

= (eα ◦ j)((p, q))

= eα(Kp, qJ)

= eβ(Kp, qJ)

= (eβ ◦ j)((p, q))

= (i ◦ β)((p, q))

= β(p, q)

for every p, q ∈ Q. This completes the proof of assertion (4).

Lemma 6.7. Let Lτ be a topoframe. For every α, β ∈ RLτ , and � ∈
{+, .,∨,∧}, eα�β = eα � eβ. Hence α � β ∈ RLτ .

Proof. For any f ∈ RLτ , let r(f) = f ◦ j. By uniqueness of α in the
following commutative diagram (see Lemma 4.3), we have r(eα) = α (and
r(eβ) = β).

τα

L
eα

L(R)

j

P (R)

i

-

6

-

6

So r(eα � eβ) = r(eα) � r(eβ) = α � β. Also, by Example 6.5, r(eα � eβ) is
L-extendable, whence er(eα�eβ) = eα�β. So that eα � eβ = eα�β.

Theorem 6.8. Let Lτ be a topoframe. Then RLτ is a sub-f -ring of Rτ .

Proof. By Lemma 6.7, this is obvious.

Theorem 6.9. For any topoframe Lτ , the mapping ϕ : RLτ −→ RLτ
taking any α to eα is an f -ring isomorphism, where eα is the function
discribed in Proposition 6.6.
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Proof. By Lemma 6.7, ϕ is an f -ring monomorphism. By Example 6.5, rf
is L-extendable and ϕ(rf ) = f , for every f ∈ RLτ . Hence ϕ is an f -ring
isomorphism.
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