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Steps toward the weak higher category of
weak higher categories in the globular

setting

Camell Kachour

I dedicate this work to Myles Tierney.

Abstract. We start this article by rebuilding higher operads of weak higher
transformations, and correct those in [7]. As in [7] we propose an operadic
approach for weak higher n-transformations, for each n ∈ N, where such weak
higher n-transformations are seen as algebras for specific contractible higher
operads. The last chapter of this article asserts that, up to precise hypothe-
ses, the higher operad B0

C of Batanin and the terminal higher operad B0
Su

,
both have the fractal property. In other words we isolate the precise tech-
nical difficulties behind a major problem in globular higher category theory,
namely, that of proving the existence of the globular weak higher category of
globular weak higher categories.

Introduction

This article is the third in a series of three articles (see [10, 11]). In [7]
we have proposed a higher operadic definition of the weak higher trans-
formations which were supposed to be the natural continuity of the work
of Michael Batanin after his work on weak higher categories. However,
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André Joyal had pointed out to us that these higher operads contain too
much coherences, and the consequence of it is we can find simple exam-
ples of natural transformations which are not algebras for these operads,
which were supposed to produce all kinds of transformations. The kind of
contractibility we used, that is, controlled by the 2-colored globular set of
arities T(1) + T(1)1, didn’t give us a good control of the coherences of this
approach of weak higher transformations. We tried to use another kind of
the notion of contractibility in [8], but Jacques Penon had pointed out to
us that this notion does not produce enough contractions for a correct ap-
proach of weak higher transformations: In [7], the notion of contractibility
produces too much contractions, and in [8] the notion of contractibility does
not have enough contractions. Despite of our promising combinatorics using
our operation systems2, we didn’t found an adapted notion of contractibility
for a good higher operadic approach of weak higher transformations.

In this article, we correct this imperfection, and believe we describe here
the correct universal contractible higher operads for all weak higher trans-
formations, thanks to an idea coming from the article [6]. As a matter of
fact, in [6], the author builds monads on the category Glob2 whose algebras
are models of all kind of weak higher transformations, and the technology
involved in it, is those of n-categorical stretchings (for each n ∈ N), which
are objects that basically use the strict world to control the weak world,
and this is exactly the kind of technology we use here: In this article we use
the monad of strict higher functors, and monads of all kinds of strict higher
transformations, to control arities of all kinds of operations related to higher
transformations. Thus instead of using only the category of ω0-operads, we
use also all ωn-operads (n ∈ N∗) where ωn denotes the monad of the strict
n-transformations3 on Glob2.

1T denotes the monad of strict higher categories in [7, 9–11] but in this article we
denote this monad by ω0 (see 2). Also, for each n ≥ 1, we denote by ωn the monad on
Glob2 of the strict n-transformations. These notations were suggested for the author by
Jacques Penon.

2Promising, because, thanks to these operation systems (called in this article Cn-
systems for all n ∈ N), we are able to build many interresting universal 2-colored higher
operads of all higher transformations for many kind of higher structures, especially those
of reflexive ∞-magmas, which the corresponding category contains weak ∞-categories as
special objects. See [11].

3However, it is important to notice that when contractibility is not involved, the 2-
colored globular set of arities ω0(1) + ω0(1) allows to build many interesting 2-colored
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Then we obtain a coglobular object of contractible higher operads (see
Section 5) in a category C which must have small pushouts. This coglobular
object is formed by higher operads of all kinds of weak higher transforma-
tions. Thanks to Proposition 7.2 in [2], it provides a higher operad over
the monad ω0 of the strict higher categories, called the Coendomorphism
higher operad associated to this coglobular object. In Section 5, we con-
jecture that the Batanin operad B0

C of weak higher categories is fractal.
If this conjecture is true, then it shows that all weak higher categories in
Batanin’s sense plus all kinds of weak higher transformations build in our
article, form themselves a weak higher category in Batanin’s sense. In order
to state properly this conjecture, we recall the definition of the standard
action associated to a coglobular operadic object, of an algebraic coglobu-
lar object of higher operads and of fractal higher operads, which are slight
generalization of those introduced in [10].

Surprisingly, with our technology, the case of the strict higher category
of the strict higher categories remains conjectural and is at the same level
of difficulty as the weak case. This important fact does not affect at all
our technology because, in our framework, the operad for strict higher cat-
egories must be seen as a higher operad equipped with a strict version of
contractibility with chosen contractible units. For instance it is not diffi-
cult to show that the terminal higher operad is the free strictly contractible
higher operad with contractible units, generated by the pointed collection4

C0. Thus, in our framework, the operad of strict higher categories is an
initial object in the category of higher operads equipped with strict con-
tractions, which have contractible units and which are equipped with a
C0-system. See the author’s thesis [9].

The plan of this article is as follows.

Section 2 describes, for all n > 1, the monads ωn of strict n-transformat-
ions, but also the monad ω1 of strict higher functors, and the monad ω0 of
strict higher categories. Thanks to the globular category of strict higher
transformations, we are able to build the coglobular object (ω•, κ, δ) of
monads for strict higher transformations. If we apply this coglobular ob-
ject to the terminal object (1, 1) of Glob2 we obtain the coglobular object
(ω•(1, 1), κ(1, 1), δ(1, 1)) of all arities for operads of strict and weak higher

higher operads: Such 2-colored higher operads are described in [11].
4C0 is the composition system used by Batanin in [2].



12 Camell Kachour

transformations. It is interesting to notice that (ω•(1, 1), κ(1, 1), δ(1, 1))
could be thought of the underlying coglobular set of the free strict higher
category of free strict higher categories on (1, 1).

Section 3 describes, for n ≥ 1, combinatorics of the object Cn = (Cn0 , C
n
1 )

in Glob2 which are pointed collections for higher transformations. These
combinatorics are the same as those described in [7, 9–11] except that the
old version of Cn are globular sets instead: Colors 1 and 2 in [7, 9–11]
are replaced by pairs of globular sets, as in the article [6]. Then, for each
n ≥ 1, we describe all pointed ωn-collections (Cn, an, cn; pn). These pointed
ωn-collections (Cn, an, cn; pn) contain all basic operations we need to gener-
ate higher operad (Bn

C , a
n, cn) for weak n-transformations of Section 4. We

finish this section by describing the coglobular object (C•, a•, c•; p•) of all
pointed ωn-collections. It is a coglobular object of a category ω•-Collp which
is a kind of “fibred category” whose fibers are the well known monoidal cat-
egories ωn-Collp.

Section 4 describes, for n ≥ 1, the operads (Bn
C , a

n, cn) for weak n-
transformations. We start by describing contractible pointed ωn-collections
which is completely similar to the notion of contractibility described by
Michael Batanin in [2]. Then we use a result of Max Kelly in [13] to
generate, for all n ≥ 1, the free contractible higher operad (Bn

C , a
n, cn)

on the pointed ωn-collection (Cn, an, cn; pn) described in Section 3. This
higher operad Bn

C (for each n ≥ 1) is the initial object of the category
CnCωn-Oper of contractible ωn-operads equipped with a Cn-system. If
n = 1, (B1

C , a
1, c1) is the higher operad for weak higher functors. If n > 1,

(Bn
C , a

n, cn) is the higher operad for weak higher n-transformations. We de-
scribe accurately multiplications of these operads in order to clarify possible
explicit computations and also “shapes” of Bn

C-algebras. We finish this sec-
tion with three propositions which state that in dimension 2, B1

C-algebras
are pseudo-2-functors, B2

C-algebras are pseudo-2-natural transformations,
and B3

C-algebras are modifications. Proofs of these propositions are com-
pletely similar to those in [6, 7], thus we prefer to avoid to give it again,
because it uselessly make the text longer.

In Section 5 we recall the definition of the standard action associated
to a coglobular operadic object, of an algebraic coglobular object of higher
operads, and the definition of fractal higher operads. These definition are
a slight generalization of those given in [10] where the spirit of examples



Weak higher category of weak higher categories 13

given in [11] remains unchanged. Then we describe the coglobular object
(B•C , δ, κ) of operads for weak higher transformations in a category ω•-Oper
which is a kind of “fibred category” whose fibers are the categories ωn-Oper.
This construction is possible, thanks to a result of Tom Leinster in [14].
However, the author has not yet found a nice category C of higher operads
which has pushouts and contains the coglobular object (B•C , δ, κ) in order
to build the corresponding operad of coendomorphism Coend(B•C). Thus,
we suppose that this coglobular object lives in a category5 C having small
pushouts. Then, we state our conjecture: We believe the operad B0

C of
Batanin is fractal. A way to prove this property is to prove that Coend(B•C)
is contractible and equipped with a C0-system. If our conjecture is true then
it will show that the globular weak higher category of globular weak higher
categories exists. We finish this article by describing the coglobular object
(B•Su , δ, κ) of operads for strict higher transformations in the same category
ω•-Oper as above. We present these operads Bn

Su
(n ∈ N) similarly to the

Bn
C : for that we use a strict version of contractibility. Then we conjecture

that the terminal ω0-operad B0
Su

of strict higher categories is fractal for
(B•Su , δ, κ). This conjecture looks bizarre, because it is well known that the
strict higher category of strict higher categories exists. However, it shows
that our technology provides a unify and precise technical problem to solve
these conjectures related to these fractals phenomenons, which are in the
same level of difficulty, when some kinds of contractibility are involved.

1 Conventions and abuse of languages

The category of the small strict ∞-categories is denoted by ∞-Cat, and
∞-CAT denotes the category of the strict ∞-categories. Set denotes the
category of small sets, and SET denotes the category of sets and large
sets. The sketch of the coglobular sets is denoted6 by G0. Glob denotes the
category of globular sets, and Glob2 denotes the product of Glob with itself
in CAT . Sources and targets of globular sets use the letters s and t. The
terminal object of Glob is denoted by 1, and the terminal object of Glob2

5The author believes that such a category does not deserve to be conjectural, because
several such categories are candidates. We prefer to postpone such a nice choice of C for
a future work.

6The usual notation is G and usually called the globe category.
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is denoted by (1, 1). Also GLOB denotes the category of globular sets and
large globular sets. GCat denotes the category of small globular categories,
and GCAT denotes the category of globular categories. If G is a globular
set or a large globular set then G(m) denotes its set (or its large set) of
m-cells. For all reflexive globular sets, their operations of reflexivity share
the same notations 1mm+1 for all integers m ≥ 0. Mndf (Glob2) denotes the
category of finitary monads on Glob2. Forgetfull functors are often denoted
by the letters U or V , and their left adjoints are often denoted by the letters
F or H. All coglobular objects (W •, δ, κ) are denoted by the same letters δ
and κ, and all globular objects (W •, σ, β) are denoted by the same letters
σ and β. Also collections and operads share the same notation for their
maps of arities denoted by the letter a, and their maps of coarities denoted
by the letter c. Finally monads (S, η, µ) share also the same notation η for
their universal maps, and µ for their multiplications. Contexts of this article
should avoid any confusions. For this article the reader must be aware about
basic notions of higher operads as defined in [2] and T-categories as defined
in [5, 14].

2 The strict n-transformations

2.1 Monads ωn of the strict n-Transformations

Definition 2.1. Consider C and C ′ two objects of ∞-Cat. A strict ∞-

functor C
F // C ′ between C and C ′ is a morphism of ∞-Cat. Thus it is

a morphism of globular sets which preserves the strict ∞-structures of C
and C ′, which means that

• If x and y are two m-cells of C such that y ◦mp x is defined then
F (y ◦mp x) = F (y) ◦mp F (x)

• If x is a p-cell of C and the m-cell 1pm(x) is the reflexion of x then
F (1pm(x)) = 1pm(F (x))

A morphism between two strict ∞-functors C
F // C ′ and D

G // D′ is
a morphism of the category of arrows Arr(∞-Cat). Thus, it is given by two

strict ∞-functors C
H // D and C ′

H′ // D′ such that H ′F = F ′H. The
category of strict ∞-functors is denoted by ∞-Funct.
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We have a monadic forgetful functor ∞-Funct U1
// Glob2 whose left

adjoint is denoted by F 1. The monad of the strict ∞-functors is denoted
by (ω1, η1, µ1), or ω1 for short, and is an object of Mndf (Glob2). Here

1Glob2
η1

// ω1 is the universal map of ω1.

Definition 2.2. Consider two strict ∞-functors F and G between two ob-
jects C and D of ∞-Cat

C
F //
G

// D

A strict ∞-natural transformation F
τ // G between F and G is a 2-cell

in ∞-Cat. More precisely τ is given by a morphism in Set

C(0)
τ // D(1)

such that for all 1-cell a
f // b of C we have τ(b) ◦10 F (f) = G(f) ◦10 τ(a).

Consider another strict ∞-natural transformation F ′
τ ′ // G′ such that:

C ′
F ′ //
G′
// D′ . A morphism between two strict ∞-natural transformations

τ // τ ′ is given by two strict ∞-functors C
H // C ′ and D

K // D′

such that 11
2(K) ◦20 τ = τ ′ ◦20 11

2(H). The category of strict ∞-natural trans-
formations is denoted (2,∞)-Trans.

We have a monadic forgetful functor (2,∞)-Trans U2
// Glob2 whose

left adjoint is denoted by F 2. The monad of the strict ∞-natural trans-
formations is denoted by (ω2, η2, µ2), or ω2 for short, and is an object of

Mndf (Glob2). Here 1Glob2
η2

// ω2 is the universal map of ω2. Let us

rename by strict 2-transformations objects of (2,∞)-Trans7. For integers
n ≥ 3, we define the strict n-transformations by induction.

Definition 2.3. Suppose the categories (k,∞)-Trans of the strict
k-transformations are defined for all k ∈ J2, n−1K. A strict n-transformation

7With this terminology, the strict ∞-functors could be called the strict 1-
transformations and the strict ∞-categories could be called the strict 0-transformations.
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α
ξ // β between the strict (n− 1)-transformations α and β is given by a

morphism in Set

C(0)
ξ // D(n)

such that for all n-cell a of C with sn0 (f) = a and tn0 (f) = b we have
11
n(ξ(b))◦n0F (f) = G(f)◦n0 11

n(ξ(a)). Consider another strict n-transformation

α′
ξ′ // β′ such that sn0 (ξ′) = C ′ and tn0 (ξ′) = G′. A morphism between

two strict n-transformations ξ // ξ′ is given by two strict ∞-functors

C
H // C ′ and D

K // D′ such that 11
n(K) ◦n0 ξ = ξ′ ◦n0 11

n(H). The
category of strict n-transformations is denoted by (n,∞)-Trans.

We have a monadic forgetful functor (n,∞)-Trans Un // Glob2 whose
left adjoint is denoted by Fn. The monad of the strict n-transformations is
denoted by (ωn, ηn, µn), or ωn for short, and is an object of Mndf (Glob2).

Here 1Glob2
ηn // ωn is the universal map of ωn.

Theorem 2.4. For each n ≥ 1, the monad (ωn, ηn, µn) on Glob2 of the
strict n-transformations is cartesian.

We prove this theorem by using systematicaly the cartesianity of the
monad (ω0, η0, µ0) on Glob of the strict higher categories. Accurate proof
of this theorem shall be described in [12].

In [11] we define a coglobular object in Cat

Gop0
δ1
0 //

κ1
0

// Gop1
δ1
2 //

κ2
1

// Gop2
//// Gopn−1

δnn−1 //
κnn−1

// Gopn // //

such that when we apply to it the contravariant functor [−; Set] we obtain
the globular category of globular sets8.

// // [Gopn ;Set]
σnn−1 //
βnn−1

// [Gopn−1;Set] //// [Gop1 ; Set]
σ1

0 //

β1
0

// [Gop0 ;Set]

8It is easy to see that if we apply to it the contravariant functor [−;Cat] we obtain the
globular category of small globular categories.
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An object of the category of presheaves [Gopn ; Set] is called an (n, ω)-
graph and morphisms in [Gopn ; Set] are just natural transformations between
such presheaves.

Proposition 2.5. For each n ≥ 2 the category (n,∞)-Trans is a full sub-
category of [Gopn ;Set]. Also the categories ∞-Funct and ∞-Cat are, re-
spectively, full subcategories of [Gop1 ;Set] and [Gop0 ;Set]. Also sources and
targets functors σnn−1 and βnn−1 of the globular category just above respect
these strict structures and their restrictions give the globular category of
strict ∞-categories

//// (n,∞)-Trans
σnn−1//
βnn−1

// (n− 1,∞)-Trans ////∞-Funct
σ1

0 //

β1
0

//∞-Cat .

Now consider the globe functor CAT GLOB // GCAT and the object

functor CAT OBJ // SET . If we apply GLOB on OBJ we obtain the

functor GCAT GLOB // GLOB which sends a globular category to its
object part. If we apply it to the globular category of strict ∞-categories
we obtain the following globular object in SET

//// (n,∞)-Trans(0)
σn
n−1//

βn
n−1

// (n− 1,∞)-Trans(0) //// ∞-Funct(0)
σ1
0 //

β1
0

// ∞-Cat(0) .

It is not difficult to see that this globular set is equipped with a canonical
structure of strict ∞-category (see for example [6]). This ∞-categorical
structure on ∞-Cat is well known, but we need this accurate description of
its underlying globular set as above for the sections 2.2 and 5.2.

2.2 The coglobular object of the monads ωn

In this section we use the category Adj of adjunctions and the categoryMnd
of categories equipped with a monad as defined in [6], and we freely use the

fact that there is a canonical functor Adj U //Mnd which is left adjoint
U a A, where A is the Eilenberg-Moore construction.

The globular category ((•,∞)-Trans, σ, β) and the adjunctions
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Fn a Un(n ∈ N) (see Section 2) allow to build a globular object in Adj:

// // (n,∞)-Trans

Un

��

σnn−1//
βnn−1

// (n− 1,∞)-Trans

Un−1

��

////∞-Funct

U1

��

σ1
0 //

β1
0

//∞-Cat

U0

��
//// Glob2
Fn a

OO

//// Glob2
Fn−1 a

OO

//// Glob2
F 1 a

OO

//// Glob

F 0 a

OO

Thus, if we apply the functor U to this diagram in Adj, we obtain the
globular object in Mnd

// // (Glob2, ωn)
σnn−1 //
βnn−1

// (Glob2, ωn−1) //// (Glob2, ω1)
σ1

0 //

β1
0

// (Glob, ω0)

and its underlying coglobular object (ω•, δ, κ) of monads for the strict higher
transformations

ω0
δ1
0 //

κ1
0

// ω1
δ1
2 //

κ2
1

// ω2 //// ωn−1
δnn−1 //
κnn−1

// ωn ////

An important coglobular of the strict higher transformations is given by the
diagram

ω0(1)
δ1
0 //

κ1
0

// ω1(1, 1)
δ1
2 //

κ2
1

// ω2(1, 1) //// ωn−1(1, 1)
δnn−1 //
κnn−1

// ωn(1, 1) // //

where (1, 1) is the terminal object of the category Glob2. We abusively
denote it by (ω•(1, 1), δ, κ). For each integer n ≥ 1,

ωn(1, 1) = (ωn0 (1, 1), ωn1 (1, 1))

is the free strict n-transformation on the terminal object (1, 1) of the cat-
egory Glob2. These free strict n-transformations ωn(1, 1) (n ≥ 1) have an
underlying (n+ 1)-globular set of maps which is denoted by

{ξn}
βn+1
n

//σn+1
n

// {αn−1, βn−1}
βnn−1

//
σnn−1

// · · · · · ·
βk+2
k+1

//
σk+2
k+1

// {αk, βk}
βk+1
k

//
σk+1
k

// · · · · · ·

· · · · · · · · ·
σ3

2

//
σ3

2

// {α1, β1}
σ2

1

//
σ2

1

// {f, g}
β1

0

//
σ1

0

// {C,D}.
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where C(0)
ξn // D(n) , for each integer k ∈ J1, n − 1K we have the maps

C(0)
αk //
βk
// D(k) , C

f //
g
// D are underlying strict higher functors which

are its source and target, C and D represent its underlying strict higher cate-
gories source and target. This description of these free strict
n-transformations ωn(1, 1) (n ∈ N) gives a quick understanding of the maps
δnn−1 and κnn−1, which respectively send the free (n−1)-transformation ξn−1

to the (n− 1)-transformations αn−1 and βn−1.
More precisely, for each n ≥ 1, this description of ωn(1, 1) is a tool to

describe the coglobular object (ω•(1, 1), δ, κ) just above: For each integer
n ≥ 2 we have δn+1

n (ξn) = σn+1
n (ξn+1), where σn+1

n is the functor defined in
Proposition 2.5. With the description just above for ωn+1(1, 1) and ωn(1, 1),
it gives δn+1

n (ξn) = αn. Also κn+1
n (ξn) = βn+1

n (ξn+1) = βn where βn+1
n is

the functor defined in Proposition 2.5. Also δ1
0 sends the free strict higher

category ω0(1) to the domain C of the strict higher functor f = ω1(1, 1), and
κ1

0 sends the free strict higher category ω0(1) to the codomain D of the strict
higher functor f = ω1(1, 1). Finally, δ2

1 sends the free strict higher functor
f = ω1(1, 1) to the domain f of the free strict higher natural transformation
ξ1 = ω2(1, 1), and κ2

1 sends the free strict higher functor f = ω1(1, 1) to the
codomain g of the free strict higher natural transformation ξ1 = ω2(1, 1).

The universal unit ηn of the monad ωn of the strict n-transformations

gives the morphism (1, 1)
ηn(1,1)// ωn(1, 1) in Glob2 which is in fact given by

two morphisms 1
ηn0 (1,1)

// ωn0 (1, 1) and 1
ηn1 (1,1)

// ωn1 (1, 1) in Glob. For each
integer n ∈ N, the unique n-cell of the terminal globular set is denoted by
1(n), also we use the shorter notations 1(n) = ηn0 (1, 1)(1(n)) and 2(n) =
ηn1 (1, 1)(1(n)).

Remark 2.6. We deliberately describe this free strict n-transformation
ωn(1, 1) with almost the same notations for m-cells of the underlying glob-
ular sets of Cn for 2 ≤ m ≤ n+ 1, except for functors, where here we use f
and g for the underlying strict higher functors of ωn(1, 1), whereas symbols
of functors of Cn are denoted by F and G. Also the underlying strict higher
category C of ωn(1, 1) is just ωn0 (1, 1), and D is the free strict higher sub-
category of ωn1 (1, 1) generated by the image of the universal map ηn1 (1, 1),
that is, by all m-cells 2(m) (m ∈ N).
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3 The pointed ωn-collections

If S is a cartesian monad on a category G then S-collections are kind of
S-graphs defined in [14], where their domains of arities is an object S(1)
such that 1 is a terminal object of the category G. The category of S-
collections is denoted S-Coll. The category of pointed S-collections is also
defined in [14] and is denoted by S-Collp. In this section we work with the
locally finitely presentable category (l.f.p category) ωn-Collp of pointed ωn-
collections (n ∈ N). If n ≥ 1 an object of ωn-Collp is denoted by (C, a, c; p),
and described by a commutative diagram in Glob2

(1, 1)
ηn(1,1)

zz
p

��

id

##
ωn(1, 1) Ca

oo
c
// (1, 1)

and if n = 0 described by a commutative diagram in Glob

1
η0(1)

||
p

��

id

��
ω0(1) Ca

oo
c
// 1

The categories ωn-Collp are monoidal, and the monoids in them are ωn-
operads used in Section 4. For tensors of all monoidal categories ωn-Collp
(n ∈ N) we refer to [14]. We shall also use the category ω•-Collp whose
objects are the pointed ωn-collections for each n ∈ N, and morphisms of
ω•-Collp are those of ωn-Collp for each n ∈ N plus morphisms

(C, a, c; p)
(f,h) // (C ′, a′, c′; p′)

between the pointed ωn-collections and the pointed ωm-collections, where
the underlying maps

C
f // C ′ and ωn(1, 1)

h // ωm(1, 1)

make commutative diagrams. Also if n = 0 or m = 0, we have mor-

phisms (C, a, c; p)
(f,h,q) // (C ′, a′, c′; p′) with extra maps 1

q // (1, 1)
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(if n = 0) or (1, 1)
q // 1 (if m = 0) which also make commutative the

corresponding diagrams.
In [7, 10] we described a coglobular object

C0
δ1
0 //

κ1
0

// C1
δ1
2 //

κ2
1

// C2 //// Cn−1
δnn−1 //
κnn−1

// Cn ////

in the category of the pointed ω0-collections, where for each n ∈ N, Cn

is a globular set which contains all symbols of operations needed for n-
transformations. Actually, for each n ≥ 1, each globular set Cn is isomor-
phic in Glob to the sum Cn0 t Cn1 where Cn0 is the subglobular set of Cn

containing all the symbols “µ” of operations needed for domain higher cate-
gories9 of higher functors, plus the unary operation symbols “u”, and Cn1 is
the subglobular set of Cn containing all other symbols of operations needed
for n-transformations, that is, all the symbols “ν” of operations of codomain
higher categories of higher functors, plus all symbols “F” and “G” of opera-
tions for domain and codomain of higher natural transformations, plus other
symbols “α”, “β” and “ξn” of operations specific to n-transformations, and
finally it contains the unary operation symbols “v”. The unary operation
symbols “u” and “v” give the pointing of Cn when it is seen as a collection.
In the article [7]10, Cn are seen as pointed collection over the categorical
sum ω0(1)t ω0(1) for n ≥ 1, and C0 is the composition system of Batanin.

In this article, instead of using objects Cn w Cn0 t Cn1 in Glob, we
use objects in Glob2 that we still denote Cn, and which are defined by
Cn = (Cn0 , C

n
1 ), where the globular sets Cn0 and Cn1 are exactly those just

above that we used in [7] to describe the “old” Cn.
Also another slightly but important difference with the Cn described

in [7, 10], is that Cn here are seen as pointed ωn-collections for each n ∈ N
(see 3) instead of only being pointed ω0-collections.

Thus the combinatorics is entirely similar to those of [7, 10], but for the
convenience of the reader we are going to recall its precise constructions.

Pointings are denoted by (1, 1)
pn // Cn if n ≥ 1, and 1

p0
// C0 if n = 0.

9In fact, it is just the composition system defined in [2].
10In [7] (Cn, an, cn; pn) denotes the pointed collection with underlying globular set Cn

of operations symbols, but we can denote it just Cn when there is no risk of confusion.
In the present article Cn = (Cn0 , C

n
1 ) is seen as an object of Glob2 or is seen as a pointed

ωn-collection (see 3).
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C0 is a globular set and contains the symbols µmp ∈ C0(m)(0 ≤ p < m)
for the compositions of higher categories, plus the operadic unary symbols
um ∈ C0(m). More specifically:

∀m ∈ N, C0 contains an m-cell um such that: smm−1(um) = tmm−1(um) =
um−1 (if m ≥ 1).

∀m ∈ N − {0, 1}, ∀p ∈ N, such that m > p, C0 contains an m-cell µmp
such that: If p = m − 1, smm−1(µmm−1) = tmm−1(µmm−1) = um−1. If
0 ≤ p < m− 1, smm−1(µmp ) = tmm−1(µmp ) = µm−1

p .

Furthermore C0 contains a 1-cell µ1
0 such that s1

0(µ1
0) = t10(µ1

0) = u0.

Pointing p0 of C0 is given by p0(1(m)) = um for all m ∈ N.
For all integer n ≥ 1, Cn = (Cn0 , C

n
1 ) is such that Cn0 = C0, thus we just

need to describe the second component Cn1 of Cn. All such globular set Cn1
contains the following cells:

∀m ∈ N, Cn1 contains an m-cell vm such that: smm−1(vm) = tmm−1(vm) =
vm−1 (if m ≥ 1).

∀m ∈ N − {0, 1}, ∀p ∈ N, such that m > p, Cn1 contains an m-cell νmp
such that: If p = m − 1, smm−1(νmm−1) = tmm−1(νmm−1) = vm−1. If
0 ≤ p < m− 1, smm−1(νmp ) = tmm−1(νmp ) = νm−1

p .

Furthermore Cn1 contains a 1-cell ν1
0 such that s1

0(ν1
0) = t10(ν1

0) = v0,

plus other extra symbols of operations:
If n = 1, the globular set C1

1 is built by adding to it a single symbol for
functor (for each cell level): ∀m ∈ N the Fm m-cell is added, which is such
that: If m ≥ 1, smm−1(Fm) = tmm−1(Fm) = Fm−1.

If n = 2, the globular set C2
1 is built by adding to it two symbols of

functor (for each cell level) and a symbol of natural transformation. More
precisely

∀m ∈ N we add the m-cell Fm such that: If m ≥ 1, smm−1(Fm) =
tmm−1(Fm) = Fm−1, and we add the m-cell Gm such that: If m ≥ 1,
smm−1(Gm) = tmm−1(Gm) = Gm−1.

And finally we add a 1-cell τ such that: s1
0(τ) = F 0 and t10(τ) = G0.
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If n ≥ 3, each globular set Cn1 is built by adding to it the required
cells, specific to n-transformations. They contain four large groups of cells:
the symbols of codomain higher categories, the symbols of the higher func-
tors (domains and codomains), and the symbols of the n-transformations
(natural higher transformations, higher modifications, etc). More precisely:

Symbols for higher functors ∀m ∈ N, Cn1 contains m-cells Fm and Gm

such that: if m ≥ 1, then smm−1(Fm) = tmm−1(Fm) = Fm−1 and
smm−1(Gm) = tmm−1(Gm) = Gm−1.

Symbols for higher n-transformations ∀p, with 1 ≤ p ≤ n − 1, Cn1
contains p-cells αp and βp which are such that: ∀p with 2 ≤ p ≤ n−1,
spp−1(αp) = spp−1(βp) = αp−1 and tpp−1(αp) = tpp−1(βp) = βp−1. If

p = 1, then s1
0(α1) = s1

0(β1) = α0
0 and t10(α1) = t10(β1) = β0

0 . Finally
Cn1 contains an n-cell ξn such that snn−1(ξn) = αn−1, bnn−1(ξn) = βn−1.

For each n ≥ 1, pointing of Cn is given by two morphisms 1
pn0 // Cn0 and

1
pn1 // Cn1 in Glob defined by: pn0 (1(m)) = um and pn1 (1(m)) = vm for all

m ∈ N.
Let us denote by ω0 the monad of the strict higher categories on the

category Glob, and let us denote by 1 the terminal globular set. Then the
free strict higher category ω0(1) was used by Batanin in [2] to define a
pointed ω0-collection

1
η0(1)

||
p0

��
id

��
ω0(1) C0

a0
oo

c0
// 1

called composition system in [2, 7]. Let us recall the definition of this
pointed ω0-collection: C0 has been described above, and for all 0 ≤ p < m,
a0(µmp ) = 1(m) ?mp 1(m), and c0 is just the unique map from C0 to 1. This
pointed ω0-collection generates the operad B0

C of Batanin whose algebras are
his definition of weak higher categories. Also in [9] with the notion of strictly
contractibility and contractible units, we can see that such ω0-collection
generates the monad ω0, seen as operad over itself, that we denoted by B0

Su
.

In other word the terminal operad over ω0 can be presented as the initial
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object in the category of operads over ω0 which are strictly contractibles
with contractible units and equipped with a C0-system (see 4.3).

Let (1, 1) be the terminal object of the category Glob2. For each n ≥ 1
we are going to describe a specific pointed ωn-collection

(1, 1)
ηn(1,1)

zz
pn

��

id

##
ωn(1, 1) Cn

an
oo

cn
// (1, 1)

which generates the operads Bn
C of weak n-transformations. For n = 1

it generates the operads B1
C of weak higher functors. Similarly to B0

Su
,

these ωn-collections present operads ωn of strict n-transformations (for each
n ≥ 1) as initial object Bn

Su
of the category of operads over ωn which are

strictly contractibles, with contractibles units, and equipped with a Cn-
system (see 5.2).

For each n ≥ 1, let us denote by (Cn, an, cn; pn), or Cn for short, such
pointed ωn-collection. We use the notation in the end of Section 2.2 to
describe these pointed ωn-collections (Cn, an, cn; pn) (n ≥ 1):

If n = 1, the pointed ω1-collection (C1, a1, c1; p1) is given by two morphisms
of spans in Glob

1
η1

0(1,1)

{{
p1

0
��

id

��
ω1

0(1, 1) C1
0

a1
0

oo
c10

// 1

1
η1

1(1,1)

{{
p1

1
��

id

��
ω1

1(1, 1) C1
1

a1
1

oo
c11

// 1

For all m ∈ N, a1
0(um) = 1(m) and c1

0(um) = 1(m). For all integers
0 ≤ p < m, a1

0(µmp ) = 1(m) ?mp 1(m) and c1
0(µmp ) = 1(m). Similarly,

for all m ∈ N, a1
1(vm) = 2(m) and c1

1(vm) = 2(m). For all integers
0 ≤ p < m, a1

1(νmp ) = 2(m) ?mp 2(m) and c1
1(νmp ) = 2(m). Finally for

all m ∈ N, a1
1(Fm) = fm(1(m)) and c1

1(Fm) = 2(m).

If n = 2, the pointed ω2-collection (C2, a2, c2; p2) is given by two morphisms
of spans in Glob
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1
η2

0(1,1)

{{
p2

0
��

id

��
ω2

0(1, 1) C2
0

a2
0

oo
c20

// 1

1
η2

1(1,1)

{{
p2

1
��

id

��
ω2

1(1, 1) C2
1

a2
1

oo
c21

// 1

such that: For all m ∈ N, a2
0(um) = 1(m) and c2

0(um) = 1(m). For
all integers 0 ≤ p < m, a2

0(µmp ) = 1(m) ?mp 1(m) and c2
0(µmp ) = 1(m).

Similarly for all m ∈ N, a2
1(vm) = 2(m) and c2

1(vm) = 2(m). For all
integers 0 ≤ p < m, a2

1(νmp ) = 2(m) ?mp 2(m) and c2
1(νmp ) = 2(m). Fur-

themore for all m ∈ N, a2
1(Fm) = fm(1(m)) and c2

1(Fm) = 2(m),
also a2

1(Gm) = gm(1(m)) and c2
1(Gm) = 2(m). Finally we have

a2
1(τ) = τ(1(0)) and c2

1(τ) = 2(1).

If n ≥ 3, the pointed ωn-collection (Cn, an, cn; pn) is given by two mor-
phisms of spans in Glob

1
ηn0 (1,1)

zz
pn0
��

id

��
ωn0 (1, 1) Cn0an0

oo
cn0

// 1

1
ηn1 (1,1)

zz
pn1
��

id

��
ωn1 (1, 1) Cn1an1

oo
cn1

// 1

such that: For all m ∈ N, an0 (um) = 1(m) and cn0 (um) = 1(m). For
all integers 0 ≤ p < m, an0 (µmp ) = 1(m) ?mp 1(m) and cn0 (µmp ) = 1(m).
Similarly for all m ∈ N, an1 (vm) = 2(m) and cn1 (vm) = 2(m). For all
integers 0 ≤ p < m, an1 (νmp ) = 2(m) ?mp 2(m) and cn1 (νmp ) = 2(m).
Furthemore for all m ∈ N, an1 (Fm) = fm(1(m)) and cn1 (Fm) = 2(m),
and also an1 (Gm) = gm(1(m)) and cn1 (Gm) = 2(m). Furthemore, for
all 1 ≤ k ≤ n − 1: an1 (αk) = αk(1(0)), and cn1 (αk) = 2(k), and also
an1 (βk) = βk(1(0)), and cn1 (βk) = 2(k). Finally we have an1 (ξn) =
ξn(1(0)) and cn1 (ξn) = 2(n).

Now let us describe the coglobular object C• in ω•-Collp, which is very
similar to the one described in [7, 9, 11]
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C0

a0

��

δ1
0 //

κ1
0

// C1

a1

��

δ1
2 //

κ2
1

// C2

a2

��

//// Cn−1

an−1

��

δnn−1 //
κnn−1

// Cn

an

��

////

ω0(1)
δ1
0 //

κ1
0

// ω1(1, 1)
δ1
2 //

κ2
1

// ω2(1, 1) //// ωn−1(1, 1)
δnn−1 //
κnn−1

// ωn(1, 1) ////

For all k ∈ N, we deliberately denote by the same notation morphisms

Ck
δk+1
k //

κk+1
k

// Ck+1 and morphisms ωk(1, 1)
δk+1
k //

κk+1
k

// ωk+1(1, 1) . In fact it is not

difficult to check (see below) that this coglobular object (C•, δ, κ) is build in
a way that, for all k ∈ N, δk+1

k ◦ak = ak+1◦δk+1
k , κk+1

k ◦ak = ak+1◦κk+1
k , but

also for all integer k ∈ N, we have the equalities ck+1 ◦ δk+1
k = ck+1 ◦κk+1

k =
ck.

The morphism C0
δ1
0 // C1 is given by the morphism C0

δ1
0 // C1

0 in

Glob which sends, for all m ∈ N, the m-cell um of C0 to the m-cell um of
C1

0 . Also it sends, for all integers 0 ≤ p < m, all m-cells µmp of C0 to the

m-cells µmp of C1
0 . The morphism C0

κ1
0 // C1 is given by the morphism

C0
κ1

0 // C1
1 in Glob, which sends, for all m ∈ N, all m-cells um of C0 to

the m-cells vm of C1
1 . Also it sends, for all integers 0 ≤ p < m, all m-cells

µmp of C0 to the m-cells νmp of C1
1 .

The morphism C1
δ2
1 // C2 is given by two morphisms C1

0

δ2
1,0 // C2

0

and C1
1

δ2
1,1 // C2

1 in Glob such that: δ2
1,0 sends, for all m ∈ N, the m-cell

um of C1
0 to the m-cell um of C2

0 , and δ2
1,1 sends, for all m ∈ N, the m-cell

vm of C1
1 to the m-cell vm of C2

1 . Also δ2
1,0 sends, for all integers 0 ≤ p < m,

the m-cell µmp of C1
0 to the m-cell µmp of C2

0 , and δ2
1,1 sends, for all integers

0 ≤ p < m, the m-cell νmp of C1
1 to the m-cell νmp of C2

1 . Furthemore δ2
1,1

sends, for all m ∈ N, the m-cell Fm of C1
1 to the m-cell Fm of C2

1 .

The morphism C1
κ2

1 // C2 is given by two morphisms C1
0

κ2
1,0 // C2

0

and C1
1

κ2
1,1 // C2

1 in Glob such that: κ2
1,0 sends, for all m ∈ N, the m-cell
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um of C1
0 to the m-cell um of C2

0 , and κ2
1,1 sends, for all m ∈ N, the m-cell

vm of C1
1 to the m-cell vm of C2

1 . Also κ2
1,0 sends, for all integers 0 ≤ p < m,

the m-cell µmp of C1
0 to the m-cell µmp of C2

0 , and κ2
1,1 sends, for all integers

0 ≤ p < m, the m-cell νmp of C1
1 to the m-cell νmp of C2

1 . Furthemore κ2
1,1

sends, for all m ∈ N, the m-cell Fm of C1
1 to the m-cell Gm of C2

1 .

For all n ≥ 2, we define the morphisms Cn
δn+1
n // Cn+1 and Cn

κn+1
n // Cn+1 .

The morphism Cn
δn+1
n // Cn+1 is given by two morphisms Cn0

δn+1
n,0 // Cn+1

0

and Cn0
δn+1
n,1 // Cn+1

1 in Glob such that: δn+1
n,0 sends, for all m ∈ N, the m-cell

um of Cn0 to the m-cell um of Cn+1
0 , for all integers 0 ≤ p < m, the m-cell

µmp of Cn0 to the m-cell µmp of Cn+1
0 . δn+1

n,1 sends, for all m ∈ N, the m-cell

vm of Cn1 to the m-cell vm of Cn+1
1 , for all integers 0 ≤ p < m, the m-cell νmp

of Cn1 to the m-cell νmp of Cn+1
1 . For all 1 ≤ k < n, δn+1

n,1 sends the k-cells

αk and βk of Cn1 respectively to the k-cells αk and βk of Cn+1
1 . Furthemore

δn+1
n,1 sends the n-cell ξn of Cn1 to the n-cell αn of Cn+1

1 .

The morphism Cn
κn+1
n // Cn+1 is given by two morphisms Cn0

κn+1
n,0 // Cn+1

0

and Cn0
κn+1
n,1 // Cn+1

1 in Glob such that: κn+1
n,0 sends, for all m ∈ N, the m-cell

um of Cn0 to the m-cell um of Cn+1
0 , for all integers 0 ≤ p < m, the m-cell

µmp of Cn0 to the m-cell µmp of Cn+1
0 . κn+1

n,1 sends, for all m ∈ N, the m-cell

vm of Cn1 to the m-cell vm of Cn+1
1 , for all integers 0 ≤ p < m, the m-cell νmp

of Cn1 to the m-cell νmp of Cn+1
1 . For all 1 ≤ k < n, κn+1

n,1 sends the k-cells

αk and βk of Cn1 respectively to the k-cells αk and βk of Cn+1
1 . Furthemore

δn+1
n,1 sends the n-cell ξn of Cn1 to the n-cell βn of Cn+1

1 .

4 Higher operads of the weak n-transformations

If S is a cartesian monad on a category G then S-operads are kind of S-
categories defined in [2, 5, 14] 11, where their domains of arities is an object
S(1) such that 1 is the terminal object of the category G. The category
of S-operads is denoted by S-Oper. In this section we work with the lo-

11Claudio Hermida calls them multicategories in [5].
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cally finitely presentable category ωn-Oper of ωn-operads (n ∈ N). An
ωn-operad is a monoid in the monoidal category ωn-Collp (see Section 3)
and is denoted by (B, a, c). A basic example of ωn-operad is given by
the terminal ωn-operad ωn of strict n-transformations (see Theorem 2.4).
We shall use also the category ω•-Oper whose objects are ωn-operads for
each n ∈ N, and morphisms of ω•-Oper are those of ωn-Oper for each

n ∈ N, plus morphisms (B, a, c)
(f,h) // (B′, a′, c′) between ωn-operads

and ωm-operads (n,m ≥ 1), where the underlying maps B
f // B′ and

ωn(1, 1)
h // ωm(1, 1) , make commutative diagrams and preserve monoid

structures. Also if n = 0 or m = 0, we have morphisms

(B, a, c)
(f,h,q) // (B′, a′, c′)

with extra maps 1
q // (1, 1) (if n = 0) or (1, 1)

q // 1 (if m = 0) which
also make commutative the corresponding diagrams, and preserve monoid
structures.

In [14] it is proved that for each n ∈ N the forgetful functor

ωn-Oper Un // ωn-Collp

is monadic. Consider (C = (C0, C1), a = (a0, a1), c = (c0, c1)) a fixed ωn-
collection12. For each integers k > 1, let us note C̃0(k) = {(x, y) ∈ C0(k)×
C0(k) : x‖y and a0(x) = a0(y)} and C̃1(k) = {(x, y) ∈ C1(k) × C1(k) :
x‖y and a1(x) = a1(y)}. Also we put C̃0(0) = {(x, y) ∈ C0(0) × C0(0) :
a0(x) = a0(y)} and C̃1(0) = {(x, y) ∈ C1(0)× C1(0) : a1(x) = a1(y)}.

Definition 4.1. For each integer n ∈ N, a contraction on the ωn-collection
(C, d, c), is the datum, for each i ∈ {0, 1} and for all k ∈ N, of a map

C̃i(k)
[,]k−−→ Ci(k + 1) such that

• s([α, β]k) = α, t([α, β]k) = β,

• ai([α, β]k) = 1kk+1(ai(α) = ai(β)).

12We do not need it to be pointed here.
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An ωn-collection which is equipped with a contraction will be called
contractible and we use the notation (C, a, c; ([, ]k)k∈N) for a contractible
ωn-collection.

A pointed contractible ωn-collections is denoted by (C, a, c; p, ([, ]k)k∈N)
(compare with Section 1.2 of the article [7]), and morphisms between two
pointed contractible ωn-collections preserve contractibilities and pointings.
The locally finitely presentable category of pointed contractible ωn-collecti-
ons is denoted by Cωn-Collp, and the forgetful functor V n

Cωn-Collp
V n // ωn-Collp

is monadic. The functor Hn denotes its left adjoint.

An ωn-operad is contractible if its underlying pointed ωn-collection lies
in Cωn-Collp. Morphisms between two contractible ωn-operads are mor-
phisms of ωn-operads which preserve contractibilities. Let us write Cωn-Oper
for the category of contractible ωn-operads. Also consider the following pull-
back in CAT :

Cωn-Collp ×
ωn-Collp

ωn-Oper p1 //

p2

��

ωn-Oper

Un

��
Cωn-Collp

V n
// ωn-Collp

If we apply the proposition of Max Kelly of Section 3 of [11] to the
diagram above, it shows that we have an equivalence of categories

Cωn-Collp ×
ωn-Collp

ωn-Oper ' Cωn-Oper

such that Cωn-Oper is a locally presentable category, and also that the
forgetful functor

Cωn-Oper On // ωn-Collp

is monadic. Denote by Fn the left adjoint of On.

Remark 4.2. The morphisms of the category Cωn-Oper preserve contrac-
tions.
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Units of each ωn-operad equipped it with a canonical pointing. This
fact leads to the following definition:

Definition 4.3. An ωn-operad B has a Cn-system if there exist a morphism

Cn
sn // B in the category ωn-Collp.

For all n ∈ N the category of contractible ωn-operads equipped with a
Cn-system is denoted by CCnωn-Oper. Its morphisms preserve contractions
and their Cn-systems and it is a locally finitely presentable category.

Definition 4.4. If n = 1, the free contractible ω1-operad

(B1
C , a

1, c1) = F 1(C1, a1, c1; p1)

on the pointed ω1-collection (C1, a1, c1; p1) is the intial object in the category
CC1ωn-Oper of contractible ω1-operads equipped with a C1-system. The
universal map η1 of B1

C gives the pointing of its underlying pointed ω1-
collection. It is the higher operad of the weak higher functors.

Definition 4.5. For all n ≥ 2, the free contractible ωn-operad

(Bn
C , a

n, cn) = Fn(Cn, an, cn; pn)

on the pointed ωn-collection (Cn, an, cn; pn) is the intial object in the cate-
gory CCnωn-Oper of contractible ωn-operads equipped with a Cn-system.
The universal map ηn of Bn

C gives the pointing of its underlying pointed
ωn-collection. It is the higher operad of the weak n-transformations

(Bn
C , a

n, cn) is given by two diagrams in Glob

1
ηn0 (1,1)

zz
pn0
��

id

!!
ωn0 (1, 1) Cn0

an0oo
cn0 //

ηn0
��

1

Bn
C,0

an0

dd

cn0

>>

1
ηn1 (1,1)

zz
pn1
��

id

!!
ωn1 (1, 1) Cn1

an1oo
cn1 //

ηn1
��

1

Bn
C,1

an1

dd

cn1

>>
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The operadic multiplication13 Bn
C ⊗Bn

C

γn // Bn
C is given by two mor-

phisms in Glob

ωn0 (Bn
C) ×

ωn0 (1,1)
Bn
C,0

γn0 // Bn
C,0 ωn1 (Bn

C) ×
ωn1 (1,1)

Bn
C,1

γn1 // Bn
C,1

and (Bn
C = (Bn

C,0, B
n
C,1), ηn = (ηn1 , η

n
0 ), µn = (µn0 , µ

n
1 )) denotes its corre-

sponding monad.
Consider an object (G0, G1) of the category Glob2. A Bn

C-algebra on

(G0, G1) is given by a morphism Bn
C(G0, G1)

v // (G0, G1) in Glob2 which

satisfies the usual axioms of algebras, and in particular it is given by two
morphisms in the category Glob

Bn
C,0 ×

ωn0 (1,1)
ωn0 (G0, G1)

v0 // G0 Bn
C,1 ×

ωn1 (1,1)
ωn1 (G0, G1)

v1 // G1

In Section 5 of the article [7] we defined a notion of dimension for Bn
C-

algebras. For our context it goes as follow: A reflexive globular set H has
dimension p ∈ N if all its q-cells for q > p are identities, that is, are reflexivity
of lower cells, and if there exist a least one p-cell in H which is not an iden-
tity. In that case we write dim(H) = p. Each Bn

C-algebra (G, v) equipped
globular sets G0 and G1 with a reflexive structure defined as follows: Take
x ∈ G0(n) and y ∈ G1(n), then 1nn+1(x) := v0([un;un]; 1nn+1(ηn0 (x))) and
1nn+1(y) := v1([un;un]; 1nn+1(ηn1 (y))), where ηn is the universal map for the
monad ωn (see 2).

Definition 4.6. For each n ≥ 1, a Bn
C-algebra (G, v) has dimension p if its

underlying reflexive globular sets G0 and G1 are such that

sup(dim(G0), dim(G1) = p.

In that case we write dim(G, v) = p.

As an exercise we encourage the reader to prove the following proposi-
tions whose proofs are similar to those we can find in [6, 7]:

Proposition 4.7. Each B1
C-algebra of dimension 2 is a pseudo-2-functor.

13Sometimes called operadic composition.
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Proposition 4.8. Each B2
C-algebra of dimension 2 is a pseudo-2-natural

transformation.

Proposition 4.9. Each B3
C-algebra of dimension 2 is a pseudo-2-modification.

5 Standard actions and hypotheses

Let us recall that, thanks to Proposition 7.2 of the article [2], if a coglobular
higher operadic object (W •, δ, κ) lives in a category C with small pushouts
then we can associate to it a coendomorphism operad Coend(W ) over the
cartesian monad ω0 of the strict ∞-categories. This proposition of Michael
Batanin is the key technical point to replace the following hypothesis.

Conjecture 5.1. The weak higher category of the weak higher categories
exists in the globular setting.

by one of the very precise technical Conjectures 5.5 and 5.6 described in
Subsection 5.1 just below.

In this section we start by giving a slight generalization of technics de-
scribed in Section 2 of the article [10]. Here CATPush denotes the category
of categories having pushouts and with morphism functors which preserve
pushouts, and C denotes a category of higher operads such that C is an
object of CATPush. Such a category C seen as a subcategory of Mnd (see
Section 2.2) must have small pullbacks, those which exist in Mnd. It is well

known that the functor Mnd
(.)-Alg// CAT preserves limits, thus it preserves

limits of C and thus it preserves pushouts of C when considering C only with
its underlying class of monads and natural transformations between them,
which is our context here.

We have the following diagram in CATPush

C
(.)-Alg // CAT op

Ob(.) // SET op.

Given a coglobular higher operadic object (W •, δ, κ) in the category C, it
induces the following diagram in CATPush
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G0

W

ww
Aop

��

Aop0

))
C

Alg(.)
// CAT op

Ob(.)
// SET op.

If we apply the functor Coend(.) of Proposition 1 and Corollary 2 of Section
1.4 of the article [10] to this diagram (just switch the category T -Cat1 with
the category C), we get the following definition.

Definition 5.2. The standard action associated to the coglobular object
(W •, δ, κ) in C is defined by the following diagram of the category ω0-Oper

Coend(W )
Coend((.)-Alg)// Coend(Aop)

Coend(Ob(.)) // End(A0) .

We also use the following definitions which generalize those in the article
[10].

Definition 5.3. A coglobular higher operadic object (W •, δ, κ) in a cate-
gory C with small pushouts is called algebraic if W (0) is an object of ω0-Oper
and if it is additionally equipped with a higher operadic morphism

W (0)
w // Coend(W ) .

Definition 5.4. A higher operad A is fractal if there exists an algebraic
coglobular higher operadic object of the form (W •, δ, κ) in a category C of
higher operads with small pushouts, such that W (0) = A.

In [9–11] we gave relevant examples of algebraic coglobular object of
higher operads and relevant examples of fractal higher operads.

5.1 The Violet Operad

Now lets us describe14 the coglobular object (B•C , δ, κ) in ω•-Oper, which is
very similar to the one described in [7, 9, 11]:

14The category ω•-Oper must be seen only as a tool to describe properly the coglobular
object (B•C , δ, κ).
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B0
C

a0

��

δ1
0 //

κ1
0

// B1
C

a1

��

δ1
2 //

κ2
1

// B2
C

a2

��

//// Bn−1
C

an−1

��

δnn−1 //
κnn−1

// Bn
C

an

��

////

ω0(1)
δ1
0 //

κ1
0

// ω1(1, 1)
δ1
2 //

κ2
1

// ω2(1, 1) //// ωn−1(1, 1)
δnn−1 //
κnn−1

// ωn(1, 1) ////

For each integer n ≥ 1, the morphism Bn
C

δn+1
n // Bn+1

C is build as follows:

Cn
δn+1
n //

!

((
ηn

��

Cn+1

ηn+1

��
Bn
C

!′ //

an

��

Bn+1
C ×

ωn+1(1,1)
ωn(1, 1)

p2 //

p1
vv

Bn+1
C

an+1

��
ωn(1, 1)

δn+1
n

// ωn+1(1, 1)

where the bottom left diagram is a pullback in ω•-Coll, and furthemore

Bn+1
C ×

ωn+1(1,1)
ωn(1, 1)

is still an ωn-operad according to Section 6.7 of [14]. It is rather evident that
it is still a contractible ωn-operad, because the description of the bottom
map δn+1

n shows that the couples (b, x) ∈ Bn+1
C ×

ωn+1(1,1)
ωn(1, 1) are pairs

such that an+1(b) = x, and two parallels cells (b, x)‖(b′, x′) ∈ Bn+1
C ×

ωn+1(1,1)

ωn(1, 1) with the same arities are such that b‖b′ inBn+1
C and which coherence

[b, b′] in Bn+1
C has arity in the image15 of δn+1

n , thus the coherence cell
[(b, x), (b′, x′)] ∈ Bn+1

C ×
ωn+1(1,1)

ωn(1, 1) is exactly the cell (1x, [b, b
′]). Because

15The description of the coglobular object (ω•(1, 1), δ, κ) in 2.2 shows that δn+1
n sends

the free strict n-transformation ξn to the free strict n-transformation αn.
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we have δn+1
n ◦ an ◦ ηn = an+1 ◦ ηn+1 ◦ δn+1

n , thus we have the existence of
a unique map

Cn
! // Bn+1

C ×
ωn+1(1,1)

ωn(1, 1)

such that p1◦! = an ◦ηn and p2◦! = ηn+1 ◦δn+1. It shows that Bn+1
C ×

ωn+1(1,1)

ωn(1, 1) is a contractible ωn-operad equipped with a Cn-system. Thus, the

universality of the map Cn
ηn // Bn

C produces a unique map

Bn
C

!′ // Bn+1
C ×

ωn+1(1,1)
ωn(1, 1)

such that !′ ◦ ηn =! and p1◦!′ = an. Thus, we obtain the morphism

Bn
C

δn+1
n // Bn+1

C defined by δn+1
n = p2◦!′. Similarly we can form the mor-

phism Bn
C

κn+1
n // Bn+1

C .

Consider the functor Mnd A // Adj of Section 2.2, and the functor

Adj V // CAT which sends an object (F,G, η, ε) of Adj to A and a mor-

phism (F,G, η, ε)
f // (F ′, G′, η′, ε′) of Adj to the functor A

h // A′ (see

the notations of Section 2.2), then the functor Mnd V ◦A // CAT sends this
coglobular object (B•C , δ, κ) to the following globular object in CAT :

// // Bn
C-Alg

σnn−1 //
βnn−1

// Bn−1
C -Alg //// B1

C-Alg
σ1

0 //

β1
0

// B0
C-Alg .

This is the globular category of the weak ∞-categories.

As in Section 2, we consider the functor GCAT GLOB // GLOB
which sends a globular category to its object part. If we apply it to the
globular category of the weak∞-categories we obtain the following globular
object in SET :

// // Bn
C-Alg(0)

σnn−1 //
βnn−1

// Bn−1
C -Alg(0) //// B1

C-Alg(0)
σ1

0 //

β1
0

// B0
C-Alg(0) .
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As we said in the introduction, one of the most important conjecture in
higher category theory is to prove that the weak ∞-category of the weak
∞-categories exists in the globular setting. We believe the large globular set
described just above must be a good candidate to start with for a complet
solution of this conjecture.

Suppose that the coglobular object (B•C , δ, κ) of this article lives in a
category C having small pushouts. According to Proposition 7.2 of the
article [2] we can associate to it a coendomorphism operad Coend(B•C) over
the cartesian monad ω0 of the strict∞-categories. This operad is called the
Violet Operad in the thesis [9] because it is a monochromatic higher operad.

Conjecture 5.5. The operad B0
C of Batanin, which algebras are his defi-

nition of weak ∞-categories, is fractal for the coglobular object

B0
C

a0

��

δ1
0 //

κ1
0

// B1
C

a1

��

δ1
2 //

κ2
1

// B2
C

a2

��

//// Bn−1
C

an−1

��

δnn−1 //
κnn−1

// Bn
C

an

��

////

ω0(1)
δ1
0 //

κ1
0

// ω1(1, 1)
δ1
2 //

κ2
1

// ω2(1, 1) //// ωn−1(1, 1)
δnn−1 //
κnn−1

// ωn(1, 1) ////

described in this article.

A way to prove this conjecture is to replace it with this second conjecture.

Conjecture 5.6. The violet operad Coend(B•C) is contractible and equipped
with a C0-system.

We believe in Conjecture 5.6 which implies Conjecture 5.5, because ex-
amples of fractal operads described in [11] have these properties, that is the
white operad, the blue operad, the yellow operad, and the green operad of
the article [11] have respectively main features of the operad B•G of globular
sets, the operad B0

Gu
of reflexive globular sets, the operad B0

M of higher
magmas, and the operad B0

Mu
of reflexive higher magmas.

Of course if B0
C is fractal for the coglobular object (B•C , δ, κ) of weak

higher categories, the standard action associated to it gives the following
diagram

B0
C

!C // Coend(B•C)
Coend((.)-Alg)// Coend(AopC )

Coend(Ob(.)) // End(A0,C)



Weak higher category of weak higher categories 37

which expresses an action of the operad B0
C of weak higher categories on the

globular object B•C-Alg(0) in SET of weak higher transformations, and thus
gives a weak higher category structure on Bn

C-algebras (n ∈ N), which means
that the globular weak higher category of globular weak higher categories
exist.

5.2 The Indigo Operad

In this section we provide a presentation of the ωn-operads ωn of strict n-
transformations (n ∈ N) similar to the Bn

C of Section 4 that we denote by
Bn
Su

, and by using our technology of fractality, reformulate the following
well known result.

Proposition 5.7. The strict higher category of the strict higher categories
exists.

Then, surprisingly, this result becomes still a conjecture as in 5.1. Para-
doxically the author believes that it is a good clue for the veracity of conjec-
tures in Section 5.1: This reformulation put two problems in the same level
of difficulty when kinds of contractibility are involved, and because Propo-
sition 5.7 is true, the ω0-operad ω0 must be fractal otherwise Proposition
5.7 is false for the canonical globular object build in the end of Section 2.1.

For each n > 0, we are going to define the pointed ωn-collections with
contractible units16, which are similar to the pointed collections with con-
tractible units defined in Section 3 of the article [11]. We denote by (R, η, µ)
the monad of reflexive globular sets (see Section 3 in [11]). A reflexive ωn-
collection (C = (C0, C1), a = (a0, a1), c = (c0, c1)) is an ωn-collection such
that C0 and C1 are reflexive globular sets, and a0 and a1 are morphisms of
reflexive globular sets. The terminal globular set 1 has a natural reflexive
globular set structure given by 1pm(1(p)) = 1(m). Thus, the maps c0 and
c1 are also morphisms of reflexive globular sets. A pointed ωn-collection
(C = (C0, C1), a = (a0, a1), c = (c0, c1); (p0, p1)) has contractible units if

there exist two monomorphisms R(1)
i0 // C0 and R(1)

i1 // C1 in Glob

16For n = 0, it will be evident to guess the definition of the pointed ω0-collections with
contractible units.
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such that we have the following factorizations

R(1)
i0

!!
1

η(1)
>>

p0

// C0

R(1)
i1

!!
1

η(1)
>>

p1

// C1

such that the induced morphisms

ωn(1, 1) (R(1),R(1))
aoo c // (1, 1)

is a reflexive ωn-collection. We denote the pointed ωn-collections with con-
tractible units by (C, a, c; p, i, (1pm)06p<m). A morphism

(C, a, c; p, i, (1pm)06p<m)
(f,id) // (C ′, a′, c′; p′, i′, (1pm)06p<m)

of pointed ωn-collections with contractible units is given by a morphism of
pointed ωn-collections

(C, a, c; p)
(f,id) // (C ′, a′, c′; p′)

such that fi = i′, and (R(1), a, c)
(f,id) // (R(1), a′, c′) is a morphism

of reflexive ωn-collections. Thus, the morphisms between two ωn-collections
equipped with contractible units preserve this structure of contractibility on
the units.

Now we are ready to define the category Suω
n-Collp of pointed strictly

contractible ωn-collections equipped with contractible units: For each inte-
ger n > 0 and each ωn-collection (C = (C0, C1), a = (a0, a1), c = (c0, c1))
we associate another object C̃ = (C̃0, C̃1) of the category Glob2 (see Section
4), which allow us to give the definition of strict contractibility

Definition 5.8. For each integer n > 0 an ωn-collection (C = (C0, C1), a =
(a0, a1), c = (c0, c1)) is strictly contractible if for all integers k ∈ N, any pair
(x, y) ∈ C̃i(k) (i ∈ {0, 1}) is such that x = y. An ωn-operad is strictly
contractible if its underlying ωn-collection is strictly contractible.
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The morphisms between two pointed strictly contractible ωn-collections
equipped with contractible units preserve these strict contractibility struc-
tures and these structure of contractibility on the units. The objects of
Suω

n-Collp are also denoted as (C, a, c; p, i, (1pm)06p<m). It is easy to see
that it is a locally presentable category, because it is based on the locally
presentable category ωn-Collp, and equipped with a strict contractibility
structure and with a structure of contractibility on the units, which the
operations 1pm on the units and their axioms, show easily that Suω

n-Collp is
also projectively sketchable17. Also we have the following easy proposition
that we can prove by induction on the dimensions of cells.

Proposition 5.9. If x, y are m-cells (m ∈ N) of a strictly contractible ωn-
collection (C = (C0, C1), a = (a0, a1), c = (c0, c1)) such that ai(x) = ai(y)
(i ∈ {0, 1}) then they are parallel and thus equal.

We can easily prove that the forgetful functor

Suω
n-Collp

U ′ // ωn-Collp

is a right adjoint by using basic techniques coming from logic as in [7]. Thus
we can apply Proposition 5.5.6 of [3] which shows the monad ωnSu induced
by this adjunction has rank. Also U ′ is monadic by the Beck theorem on
monadicity. We write R′ for the left adjoint of U ′:

Suω
n-Collp

U ′ //
ωn-Collp

R′
>oo .

Furthermore we can use the result of Kelly as in section 4 to produce with

the monadic functor ωn-Oper V // ωn-Collp the finitely locally presentable

category18

Suω
n-Oper := Suω

n-Collp ×
ωn-Collp

ωn-Oper

and the monadic functor

Suω
n-Oper O // ωn-Collp .

17Good references for sketch theory are [1, 3, 4, 15].
18Suω

n-Oper is the category of strictly contractible ωn-operads with chosen contractible
units where in particular morphisms of this category preserve the strict contractibility and
the contractibility of the units.
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Denote by F the left adjoint to O. If we apply F to the pointed ωn-
collection (Cn, an, cn; pn) as in 3 we obtain a strictly contractible ωn-operads
(Bn

Su
, an, cn; pn) equipped with contractible units and with a Cn-system. In

fact we have the following proposition.19

Proposition 5.10. For each n ∈ N, we have isomorphisms of operads
Bn
Su

w ωn.

This proposition comes from the fact that the morphism

Bn
Su

an // ωn(1, 1)

has a section20, thus is an epimorphism, and also it is a monomorphism,
thanks to Proposition 5.9 just above. We can mimic the proof in Section
5.1 to produce another presentation of the coglobular object (B•Su , δ, κ) of
higher operads for strict higher transformations.

B0
Su

a0

��

δ1
0 //

κ1
0

// B1
Su

a1

��

δ1
2 //

κ2
1

// B2
Su

a2

��

//// Bn−1
Su

an−1

��

δnn−1 //
κnn−1

// Bn
Su

an

��

////

ω0(1)
δ1
0 //

κ1
0

// ω1(1, 1)
δ1
2 //

κ2
1

// ω2(1, 1) //// ωn−1(1, 1)
δnn−1 //
κnn−1

// ωn(1, 1) ////

Proposition 5.10 tell us that the operads of strict higher transformations
have similar presentations as those of weak higher transformations, and the
coglobular object (B•Su , δ, κ) allows to a precise reformulation, with our tech-
nology of fractality, of the existence of the strict higher category of strict
higher categories. Indeed, as in Section 5.1 we go as follow: Suppose the
coglobular object (B•Su , δ, κ) is a coglobular object of a category C having
small pushouts. Then, Proposition 7.2 in [2] allows to build an associated
coendomorphism higher operad Coend(B•Su) called the indigo operad in [9].
Similar to Section 5.1, we believe the operad B0

Su
of strict higher categories

have the fractal property for this coglobular object (B•Su , δ, κ). A way to

19BnSu
is seen here as a cartesian monad over ωn, and the cartesian identity map of ωn

over itself is a way to see ωn as the initial object of the category SuC
nωn-Oper of strictly

contractible ωn-operads equipped with contractible units and equipped with a Cn-system.
20We can build this section by induction on dimensions of cells, thanks to the fact that

BnSu
is strictly contractible and is equipped with a Cn-system.
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prove it could be to show that the indigo operad is strictly contractible, is
equipped with contractible units, and has a C0-system. Surprisingly, the
author believes that such solution has the same level of difficulty as hy-
potheses stated in 5.1 for the violet operad. It means that the technology
developed in [9–11] to prove fractal phenomenons for higher structures has
direct applications when no kinds of contractibilities are involved (like in the
article [11]), but leads to non-trivial problems when kinds of contractibility
are involved. However we can see that our technology must be a crucial fea-
ture for unifying many fractal phenomenons for higher structures, especially
if our conjectures are true.

If B0
Su

is fractal for the coglobular object (B•Su , δ, κ) of strict higher
categories, the standard action associated to it gives the following diagram

B0
Su

!Su // Coend(B•Su)
Coend((.)-Alg)// Coend(AopSu)

Coend(Ob(.))// End(A0,Su)

which expresses an action of the operad B0
Su

of strict higher categories on the
globular object B•Su-Alg(0) in SET of strict (n,∞)-transformations (n ∈ N),
and thus gives a strict higher category structure on strict n-transformations
(n ∈ N), which means that the strict higher category of strict higher cate-
gories exists.
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